\(A=\frac{4x^2+6x+2}{5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

\(A=\frac{x^2}{2}-\frac{x}{6}+3\)

\(2A=x^2-\frac{x}{3}+6=x^2-2.x\frac{1}{6}+\frac{1}{36}+\frac{35}{36}\)

\(2A=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\ge\frac{35}{36}\)

\(\Rightarrow A\ge\frac{35}{72}\)Dấu "=" xảy ra khi \(x=\frac{-1}{6}\)

b)\(B=x^4-4x^3+6x^2-4x+5\)

\(B=\left(x^4-4x^3+4x^2\right)+\left(2x^2-4x+2\right)+3\)

\(B=\left(x^2-2x\right)^2+2\left(x+1\right)^2+3\ge3\)

Dấu "=" xảy ra khi:\(x=0;-1;2\)

21 tháng 3 2017

mình cũng kb

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

10 tháng 12 2019

Ta có: A = 2x2 - 4x + 3 = 2(x2 - 2x + 1) + 1 = 2(x - 1)2 + 1

Do 2(x - 1)2 \(\ge\)\(\forall\)x => 2(x - 1)2 + 1 \(\ge\)1

Dấu "=" xảy ra <=> x - 1 = 0  <=> x = 1

Vậy MinA = 1 <=> x = 1

Ta có: B = \(\frac{-7}{x^2+6x+2012}=\frac{-7}{\left(x^2+6x+9\right)+2003}=-\frac{7}{\left(x+3\right)^2+2003}\)

Do (x + 3)2 \(\ge\)\(\forall\)x => (x + 3)2 + 2003 \(\ge\)2003 \(\forall\)x

=> \(\frac{7}{\left(x+3\right)^2+2003}\le\frac{7}{2003}\forall x\) => \(-\frac{7}{\left(x+3\right)^2+2003}\ge-\frac{7}{2003}\forall x\)

Dấu "=" xảy ra <=> x+  3 = 0 <=> x = -3

Vậy MinB = -7/2003 <=> x = -3

2 tháng 1 2017

\(A=5+\frac{\left(x-2\right)^2}{x^2}\)

min\(A=5\), xảy ra tại \(x=2\)

2 tháng 1 2017

Điều kiện xác định của A là x khác 0.

A=\(\frac{6x^2-4x+4}{x^2}=\frac{5x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=5+\frac{\left(x-2\right)^2}{x^2}\)

Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\)=> \(5+\frac{\left(x-2\right)^2}{x^2}\ge5\)=> \(A\ge5\)

Với A= 5 => \(5+\frac{\left(x-2\right)^2}{x^2}=5\)=> \(\frac{\left(x-2\right)^2}{x^2}=0\)=> \(\left(x-2\right)^2=0\)=> \(x-2=0\)=> \(x=2\)

Vậy GTNN của A là 5 đạt được tại x=2.

22 tháng 6 2018

\(=x^2+6x+5\)

    \(=x^2+6x+9-4\)

   \(=\) \(\left(x+3\right)^2-4\)\(< =-4\)

dấu bằng xảy ra <=> \(\left(x+3\right)^2=0\)

                          <=>\(x=-3\)

B= \(x^2-4x-3\)

  \(=x^2-4x+4-7\)

  \(=\left(x-2\right)^2-7< =-7\)

dấu bằng xảy ra <=> \(\left(x-2\right)^2=0\)

                          <=> \(x=2\)

                              

22 tháng 6 2018

P/s pain sẽ mẫu cho 1 bài nha bài còn lại bạn tự làm :)

\(A=x^2+6x+5\)

\(A=x^2+6x+9-4\)

\(A=\left(x+3\right)^2-4\ge-4\)

\(\Rightarrow A_{min}=-4\)

dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy  Amin = -4 khi x = -3

14 tháng 7 2019

\(A=\left(x^2+x+1\right)^2=\left[\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\right]^2=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\frac{9}{16}\)\("="\Leftrightarrow x=-\frac{1}{2}\)

\(B=x^4-6x^3+10x^2-6x+9\)

\(B=\left(x^4-6x^3+9x^2\right)+\left(x^2-6x+9\right)\)

\(B=x^2\left(x^2-6x+9\right)+\left(x^2-6x+9\right)=\left(x^2+1\right)\left(x-3\right)^2\ge0\)\("="\Leftrightarrow x=3\)

\(M=\frac{3}{4x^2-4x+5}=\frac{3}{4x^2-4x+1+4}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

\("="\Leftrightarrow x=\frac{1}{2}\)

14 tháng 7 2019

bạn giải thích bài 2 hộ mình, tại sao lại có ≤ \(\frac{3}{4}\)vậy? mình đi học thấy nhiều đứa viết thế cô hỏi ở đâu ra mà ko bt.

19 tháng 3 2020

1,

    4x2+2y2+4xy-4x-6y+2019

=4x2+(4xy-4x)+(y2-2y+1)+(y2-4y+4)+2014

=4x2+2.2x(y-1)+(y-1)+(y-2)2+2014

=(2x+y-1)2+(y-2)2+2014>=2014

vì (2x+y-1)2 >=0 với mọi x,y

    (y-2)>=0 với mọi y

dấu "=" xảy ra khi  y-2=0 suy ra y=2

                      và 2x+y-1=0 suy ra x=-1/2

vậy 4x4+2y2+4xy -4x-6y+2019 min =2014 khi và chỉ khi x=-1/2,y=2

2,

         ta có x2-6x+10=(x-3)2+1>=1

vì (x-3)2>=0 với mọi x

 => 1/x2-6x+10<=1(theo tính chất thì với a>=b thì 1/a<=1/b với a,b cùng dấu)

=> -3/x2-6x+10>=-3

 dấu "="xảy ra khi x-3=0 =>x=3

vậy -3/x2-6x+10 min=-3 <=>x=3

19 tháng 7 2018

1)Ta có A =x- 4x + 1

             = x2 - 2.2.x + 22 - 3

             = ( x - 2 )-3

  Với x \(\inℝ\), ( x - 2 )\(\ge\)

  \(\Rightarrow\)(x - 2 )- 3 \(\ge\)-3

Vậy GTNN của A là -3

2) Ta có B = 4x+ 4x + 11

                   = ( 2x )+ 2.2x.1 + 12 +10

                  = ( 2x + 1 )+10

*tương tự câu 1*

3) *tương tự câu 2*

4) Ta có P = ( 2x + 1 )2 + ( x + 2)

                   = [ ( 2x )+ 2.2x.1 + 12  ] + [ x+ 2.x.2 + 22 ]

                    = 4x2 + 4x +1 + x2 + 4x + 4 

                    = 5x2 + 8x + 5

       Với x\(\inℝ\), 5x2 \(\ge\)0

             mà GTNN của 8x + 5 là 5

\(\Rightarrow\) GTNN của 5x2 + 8x + 5  là 5

  Vậy GTNN của  ( 2x + 1 )2 + ( x + 2) là 5