Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a^4-2a^3+3a^2-4a+5\)
\(=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)
\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Dấu = xảy ra khi a = 1
\(A=a^4-2a^3+3a^2-4a+5\)
\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Dấu "=" xảy ra <=> a = 1
Vậy .......
A = (a4 - 2a3 + a2) + 2.(a2 - 2a + 1) + 3 = (a2 - a)2 + 2.(a - 1)2 + 3 > 0 + 2.0 + 3
Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1
Vậy Min A = 3 tại a = 1
\(A=\left(a^2\right)^2-2a^3+2a^2+a^2-4a+2+3\\ =\left(\left(a^2\right)^2-2a^2a+a^2\right)+2\left(a^2-2a+1\right)+3\ge3\)
\(=a^2\left(a^2-2a+1\right)+2\left(a^2-2a+1\right)+3\ge3\\ =2a^2\left(a-1\right)^4+3\ge3\)
Vậy GTNN của biểu thức A là 3 tại \(a=0\)hoặc \(a=1\).
\(a^4-2a^3+3a^2-4a+5\)
\(=a^4-2a^3+a^2+2a^2-4a+2+3\)
\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Dấu "=" xảy ra khi a = 1
Vậy với a = 1 thì \(A_{Min}=3\)
1/ \(-9a^2+a+5=-\left(\left(3a\right)^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}\right)=-\left(3a+\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy GTLN của biểu thức bằng -19/4
Dấu "=" xảy ra \(\Leftrightarrow\left(3a+2\right)^2=0\Leftrightarrow3a+2=0\Leftrightarrow a=-\frac{2}{3}\)
2/ \(2a^2+2ab+b^2+2a+5=a^2+2ab+b^2+a^2+2a+5=\left(a+b\right)^2+\left(a^2+2a+1\right)+4=\left(a+b\right)^2+\left(a+1\right)^2+4=0\ge4\)
Vậy GTNN của biểu thứ bằng 4
Dấu "=" xảy ra \(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2=0\Leftrightarrow a+b+a+1=0\Leftrightarrow2a+b+1=0\Leftrightarrow2a=-1-b\Leftrightarrow a=-\frac{1+b}{2}\)
\(A=a^4-2a^3+3a^2-4a+5\)
\(A=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)
\(A=\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2+3\)
Do \(\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2\ge0\forall a\)
Nên \(\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2+3\ge3\forall a\)
Dấy "=" xả ra khi a = 1
Vậy Min A = 3 khi a = 1
ko cần giải căn ra như thế đâu