\(A=a^4-2a^3+3a^2-4a+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

\(A=a^4-2a^3+3a^2-4a+5\)

\(A=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)

\(A=\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2+3\)

Do \(\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2\ge0\forall a\)

Nên \(\left(a^2-a\right)^2+\left(\sqrt{2}a-\sqrt{2}\right)^2+3\ge3\forall a\)

Dấy "=" xả ra khi a = 1

Vậy Min A = 3 khi a = 1

22 tháng 12 2017

ko cần giải căn ra như thế đâu

21 tháng 1 2017

\(A=a^4-2a^3+3a^2-4a+5\)

\(=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)

\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu =  xảy ra khi a = 1

15 tháng 3 2017

1 nha bạn

8 tháng 4 2017

thông cảm . Mình học lớp 6 thui

8 tháng 1 2019

\(A=a^4-2a^3+3a^2-4a+5\)

   \(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

    \(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu "=" xảy ra <=>  a = 1

Vậy .......

15 tháng 3 2016

Yêu cầu???

15 tháng 3 2016

yêu cầu đề bài đâu bn

8 tháng 4 2018

\(A=a^4-2a^3+3a^2-4a+5\)

\(A=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)

\(A=\left(a^2-a\right)^2+2\left(a^2-2a+1\right)+3\)

\(A=\left(a^2-a\right)^2+2\left(a^2-1\right)+3\ge3\)

\(\Leftrightarrow Min_A=3\) khi \(a=1\)

29 tháng 10 2015

A = (a- 2a3 + a2) + 2.(a- 2a + 1) + 3 = (a- a)2 + 2.(a - 1)+ 3 > 0 + 2.0 + 3

Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1

Vậy Min A = 3 tại a = 1

29 tháng 12 2017
  1. Biến đổi: a4-2a3+a2+2a2-4a+2+3=(a2-a)2+2(a-1)2+3>=3=>Amin=3<=>x=1
  2.  
30 tháng 5 2017

\(A=\left(a^2\right)^2-2a^3+2a^2+a^2-4a+2+3\\ =\left(\left(a^2\right)^2-2a^2a+a^2\right)+2\left(a^2-2a+1\right)+3\ge3\)

\(=a^2\left(a^2-2a+1\right)+2\left(a^2-2a+1\right)+3\ge3\\ =2a^2\left(a-1\right)^4+3\ge3\)

Vậy GTNN của biểu thức A là 3 tại \(a=0\)hoặc \(a=1\).

9 tháng 6 2019

\(a^4-2a^3+3a^2-4a+5\)

\(=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu "=" xảy ra khi a = 1 

Vậy với a = 1 thì \(A_{Min}=3\)

29 tháng 7 2015

1/ \(-9a^2+a+5=-\left(\left(3a\right)^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}\right)=-\left(3a+\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy GTLN của biểu thức bằng -19/4

Dấu "=" xảy ra \(\Leftrightarrow\left(3a+2\right)^2=0\Leftrightarrow3a+2=0\Leftrightarrow a=-\frac{2}{3}\)

29 tháng 7 2015

2/ \(2a^2+2ab+b^2+2a+5=a^2+2ab+b^2+a^2+2a+5=\left(a+b\right)^2+\left(a^2+2a+1\right)+4=\left(a+b\right)^2+\left(a+1\right)^2+4=0\ge4\)

Vậy GTNN của biểu thứ bằng 4

Dấu "=" xảy ra \(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2=0\Leftrightarrow a+b+a+1=0\Leftrightarrow2a+b+1=0\Leftrightarrow2a=-1-b\Leftrightarrow a=-\frac{1+b}{2}\)