K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2021

Có: lx-2l ≥0 ; lx+3l ≥0

Để A nhỏ nhất thì một trong lx-2l và lx+3l nhỏ nhất

TH1 : lx-2l nhỏ nhất. Mà lx-2l ≥0. Dấu = xảy ra <=> x=2

          => lx+3l = l2+3l = 5 => A = 0 + 5 + 10 = 15

TH2: lx+3l nhỏ nhất. Mà lx+3l ≥0. Dấu = xảy ra <=> x= -3

          => lx-2l = l-3-2l = 5 => A = 5 + 0 + 10 = 15

          Vậy GTNN của A là 15

13 tháng 6 2021

Bạn viết rõ hơn được không ạ

13 tháng 6 2021

Đặt `B = |x - 1| + |x - 2| + |x - 3| + |x - 4|`

`= (|x - 1| + |x - 4|) + (|x - 2| + |x - 3|)`

`= (|x - 1| + |4 - x|) + (|x - 2| + |3 - x|)`

\(\Rightarrow B\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|\)

\(B\ge\left|3\right|+\left|1\right|=4\)

\(\Rightarrow A\ge4+15=19\)

hay MinA = 19

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-1\right)\left(4-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-4\right)\le0\\\left(x-2\right)\left(x-3\right)\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\2\le x\le3\end{matrix}\right.\Rightarrow2\le x\le3\)

Vậy MinA = 19 tại \(2\le x\le3\).

13 tháng 6 2021

`A=|x+3|+|x-1|+|x-5|+20`

`=|x+3|+|x-5|+|x-1|+20`

Áp dụng `|A|+|B|>=|A+B|`

`=>|x+3|+|5-x|>=|x+3+5-x|=8`

Mà `|x-1|>=0`

`=>A>+20+8=28`

Dấu "=" `<=>x=1`

27 tháng 12 2017

[ 5 - [ x - 4] + 2x ] = 10

        x - 4 + 2x     =  5 - 10

        x - 4 + 2x      = -5

         x - ( 4+ 2)    = - 5

         x - 6             = -5

         x                   = -5 + 6

          x                  = 1

27 tháng 12 2017

bài  toán này mình làm không ra

25 tháng 12 2015

có phải làm thế này ko

A=Ix+2014I+Ix+2015I+2016=Ix+2014I+I-x+2015I+2016>= Ix+2014-x-2015I+2016

=I-1I+2016=1+2016=>A>=1

17 tháng 1 2022

Ta có \(A=\left|x+2\right|+\left|x-3\right|\)

\(A=\left|x+2\right|+\left|3-x\right|\)(vì \(\left|X\right|=\left|-X\right|\))

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\), ta có:

\(A\ge\left|x+2+3-x\right|=\left|5\right|=5\)

Dấu "=" xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\). Có 2 trường hợp:

TH1: \(\hept{\begin{cases}x+2\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\Leftrightarrow-2\le x\le3\)

TH2: \(\hept{\begin{cases}x+2\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-2\\x\ge3\end{cases}}\)(vô lí)

Vậy GTNN của A là 5 khi \(-2\le x\le3\)

Đk: x >/ 3

A=x+2√x−3=x−3+2√x−3+3=(√x−3+1)2+2A=x+2x−3=x−3+2x−3+3=(x−3+1)2+2

Ta có: √x−3≥0⇔(√x−3+1)2≥1⇔(√x−3+1)2+2≥3⇔A≥3x−3≥0⇔(x−3+1)2≥1⇔(x−3+1)2+2≥3⇔A≥3

d=xrk x=3 (N)

hok tốt