K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

có phải làm thế này ko

A=Ix+2014I+Ix+2015I+2016=Ix+2014I+I-x+2015I+2016>= Ix+2014-x-2015I+2016

=I-1I+2016=1+2016=>A>=1

7 tháng 4 2017

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2013\right|+\left|x-2014\right|+\left|x-2016\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2016-x\right|\)

\(\ge x-2013+0+2016-x=3\)

Lại có: \(\left|y-2015\right|\ge0\forall y\)

\(\Rightarrow VT=\left|x-2013\right|+\left|x-2014\right|+\left|x-2016\right|+\left|y-2015\right|\ge3=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2016\le0\\y-2015=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2016\\y=2015\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2014\\y=2015\end{matrix}\right.\)

1 tháng 1 2016

tim a

 

 

18 tháng 11 2021

tatata

27 tháng 10 2015

A=7+|x+2015|

Ta có: |x+2015|>=0(với mọi x)

=>7+|x+2015|>=7 hay A>=7

Do đó, GTNN của A là 7 khi:

x+2015=0

x=0-2015

x=-2015

Vậy GTNN của A là 7 khi x=-2015

B=15-(4+x)2

Ta có: (4+x)2>=0(với moi x)

=>15-(4+x)2<=15 hay A<=15

Do đó, GTLN của A là 15 khi:

4+x=0

x=0-4

x=-4

Vậy GTLN của A là 15 khi x=-4

C=\(\sqrt{x-10}-2016\)

Ta có: \(\sqrt{x-10}\)>=0(với mọi x khác âm)

=>\(\sqrt{x-10}\)-2016>=-2016 hay C>=-2016

Do đó, GTNN của C là -2016 khi:

x-10=0

x=0+10

x=10

Vậy GTNN của C là -2016 khi x=10

câu C mk chưa học nhưng mk nghĩ thế nào làm thế nấy, ko chắc ăn

11 tháng 10 2015

\(c,Đặt\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=k.b\)

                                       \(\Rightarrow c=d.k\)      

\(-Tacó:\frac{2a-3b}{2a+3b}=\frac{2k.b-3b}{2k.b+3b}=\frac{b.\left(2k-3\right)}{b\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(1\right)\)

\(-Tacó:\frac{2c-3d}{2c+3d}=\frac{2d.k-3d}{2d.k+3d}=\frac{d.\left(2k-3\right)}{d.\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(2\right)\)

\(Từ\left(1\right),\left(2\right)\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

10 tháng 1 2018

Vì |x-2010| ≧ 0 với mọi x

    |x-2012| ≧ 0 với mọi x

   |x-2014| ≧ 0 với mọix

Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0

hay A ≧ 0

Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)

Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}

29 tháng 3 2019

Từ đầu đến A>= 0 là đúng nhưng dưới là sai nhé bạn!

14 tháng 12 2016

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(C=\left|x-2013\right|+\left|x-2014\right|\)

\(=\left|x-2013\right|+\left|2014-x\right|\)

\(\ge\left|x-2013+2014-x\right|=1\)

Dấu "=" khi \(2013\le x\le2014\)

Vậy \(Min_C=1\) khi \(2013\le x\le2014\)

13 tháng 6 2021

Đặt `B = |x - 1| + |x - 2| + |x - 3| + |x - 4|`

`= (|x - 1| + |x - 4|) + (|x - 2| + |x - 3|)`

`= (|x - 1| + |4 - x|) + (|x - 2| + |3 - x|)`

\(\Rightarrow B\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|\)

\(B\ge\left|3\right|+\left|1\right|=4\)

\(\Rightarrow A\ge4+15=19\)

hay MinA = 19

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-1\right)\left(4-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-4\right)\le0\\\left(x-2\right)\left(x-3\right)\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\2\le x\le3\end{matrix}\right.\Rightarrow2\le x\le3\)

Vậy MinA = 19 tại \(2\le x\le3\).

13 tháng 6 2021

`A=|x+3|+|x-1|+|x-5|+20`

`=|x+3|+|x-5|+|x-1|+20`

Áp dụng `|A|+|B|>=|A+B|`

`=>|x+3|+|5-x|>=|x+3+5-x|=8`

Mà `|x-1|>=0`

`=>A>+20+8=28`

Dấu "=" `<=>x=1`