Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:
a) Nếu không điều kiện gì của $x$ thì biểu thức không có GTNN
vì cho $x$ chạy từ \(-100\) đến âm vô cùng thì giá trị $A$ càng nhỏ (âm) vô cùng
b) Điều kiện: \(x>0\)
\(B=\frac{\left ( x+\frac{1}{x} \right )^6-\left ( x^6+\frac{1}{x^6} \right )-2}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}=\frac{\left ( x+\frac{1}{x} \right )^6-\left [ (x^3+\frac{1}{x^3})^2-2 \right ]-2}{\left ( x+\frac{1}{x}\right )^3+\left ( x^3+\frac{1}{x^3} \right )}\)
\(=\frac{\left ( x+\frac{1}{x} \right )^6-\left ( x^3+\frac{1}{x^3} \right )^2}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}=\frac{\left [ \left ( x+\frac{1}{x} \right )^3-\left ( x^3+\frac{1}{x^3} \right ) \right ]\left [ \left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right ) \right ]}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}\)
\(=\left ( x+\frac{1}{x} \right )^3-\left ( x^3+\frac{1}{x^3} \right )=\left ( x+\frac{1}{x} \right )^3-\left [ \left ( x+\frac{1}{x} \right )^3-3.x.\frac{1}{x}\left ( x+\frac{1}{x} \right ) \right ]\) (sd hằng đẳng thức đáng nhớ \(x^3+y^3=(x+y)^3-3xy(x+y)\) )
\(=3\left(x+\frac{1}{x}\right)\geq 3.2\sqrt{x.\frac{1}{x}}=6\) (theo BĐT Cô-si cho hai số dương)
Vậy \(B_{\min}=6\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ x>0\end{matrix}\right.\Leftrightarrow x=1\)

Lời giải:
Áp dụng BĐT AM-GM ta có:
\(6=\frac{1}{x}+\frac{2}{y}+\frac{3}{z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\)
\(\geq 6\sqrt[6]{\frac{1}{xy^2z^3}}\)
\(\Leftrightarrow \frac{1}{xy^2z^3}\leq 1\Leftrightarrow xy^2z^3\geq 1\)
Tiếp tục áp dụng BĐT AM-GM:
\(A=x+y^2+z^3\geq 3\sqrt[3]{xy^2z^3}\geq 3\sqrt[3]{1}=3\)
Vậy \(A_{\min}=3\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} \frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\ x=y^2=z^3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

a: \(A=x^2-4x+4-3=\left(x-2\right)^2-3>=-3\)
Dấu = xảy ra khi x=2
b: \(x^2+4x-10=x^2+4x+4-14=\left(x+2\right)^2-14>=-14\)
\(\Leftrightarrow\dfrac{4}{x^2+4x-10}< =-\dfrac{4}{14}\)
=>B>=2/7
Dấu = xảy ra khi x=-2
c: \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
=>2/x^2-x+1<=2:3/4=8/3
=>C>=-8/3
Dấu = xảy ra khi x=1/2
d: x^2-6x+12=(x-3)^2+3>=3
=>6/x^2-6x+12<=2
=>D>=-2
Dấu = xảy ra khi x=3

Ta có: \(A=\dfrac{x^5+2}{x^3}=x^2+\dfrac{2}{x^3}=\dfrac{x^2}{3}+\dfrac{x^2}{3}+\dfrac{x^2}{3}+\dfrac{1}{x^3}+\dfrac{1}{x^3}\)
Áp dụng bất đẳng thức Cô-si với 5 số không âm, ta có:
\(A\ge5\sqrt[5]{\left(\dfrac{x^2}{3}\right)^3.\left(\dfrac{1}{x^3}\right)^2}=\dfrac{5}{\sqrt[5]{27}}\)
Dấu " = " xảy ra khi \(\dfrac{x^2}{3}=\dfrac{1}{x^3}\Leftrightarrow x^5=3\Leftrightarrow x=\sqrt[5]{3}\)
Vậy GTNN của \(A=\dfrac{x^5+2}{x^3}\left(x>0\right)\) là \(\dfrac{5}{\sqrt[5]{27}}\) tại \(x=\sqrt[5]{3}\).

1)???
2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Vậy GTNN của A là 2 tại x=2.
3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)
\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)
Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)


a/\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{xy}{2y}=\dfrac{54}{2y}\)
\(\Rightarrow2y\cdot y=54\cdot3\Rightarrow2y^2=162\Rightarrow y^2=\dfrac{162}{2}=81\)
Mà y > 0 (gt) => \(y=\sqrt{81}=9\Rightarrow x=\dfrac{54}{9}=6\)
Vậy..............
b/ \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{4}\cdot25=\dfrac{25}{4}\\y^2=\dfrac{1}{4}\cdot9=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\sqrt{\dfrac{25}{4}}=\pm\dfrac{5}{2}\\y=\pm\sqrt{\dfrac{9}{4}}=\pm\dfrac{3}{2}\end{matrix}\right.\)
Vậy.............
c/ x/2 = y/3 => x/10 = y/15
y/5 = z/7 => y/15 = z/21
=> x/10 = y/15 = z/21
Áp dụng t/c của dãy tỉ số = nhau là ra....
Lời giải:
Ta có: \(A=\frac{x}{3}+\frac{3}{x-2}=\frac{x-2}{3}+\frac{3}{x-2}+\frac{2}{3}\)
Vì \(x>2\Rightarrow x-2>0\Rightarrow \frac{3}{x-2}; \frac{x-2}{3}>0\)
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{x-2}{3}+\frac{3}{x-2}\geq 2\sqrt{\frac{x-2}{3}.\frac{3}{x-2}}=2\)
\(\Rightarrow A=\frac{x-2}{3}+\frac{3}{x-2}+\frac{2}{3}\geq 2+\frac{2}{3}=\frac{8}{3}\)
Vậy GLNN của $A$ là $\frac{8}{3}$
Dấu bằng xảy ra khi \(\frac{x-2}{3}=\frac{3}{x-2}\Leftrightarrow x=5\)