\(\dfrac{x^5+2}{x^3}\)với x>0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Ta có: \(A=\dfrac{x^5+2}{x^3}=x^2+\dfrac{2}{x^3}=\dfrac{x^2}{3}+\dfrac{x^2}{3}+\dfrac{x^2}{3}+\dfrac{1}{x^3}+\dfrac{1}{x^3}\)

Áp dụng bất đẳng thức Cô-si với 5 số không âm, ta có:

\(A\ge5\sqrt[5]{\left(\dfrac{x^2}{3}\right)^3.\left(\dfrac{1}{x^3}\right)^2}=\dfrac{5}{\sqrt[5]{27}}\)

Dấu " = " xảy ra khi \(\dfrac{x^2}{3}=\dfrac{1}{x^3}\Leftrightarrow x^5=3\Leftrightarrow x=\sqrt[5]{3}\)

Vậy GTNN của \(A=\dfrac{x^5+2}{x^3}\left(x>0\right)\)\(\dfrac{5}{\sqrt[5]{27}}\) tại \(x=\sqrt[5]{3}\).

7 tháng 12 2018

Câu 1:

\(A=\dfrac{81x}{3-x}+\dfrac{3}{x}=\dfrac{81x}{3-x}+\left(\dfrac{3}{x}-1\right)+1=\dfrac{81x}{3-x}+\dfrac{3-x}{x}+1\ge2\sqrt{\dfrac{81x}{3-x}.\dfrac{3-x}{x}}+1=18+1=19\)

Dấu "=" xảy ra <=> x = 0,3

Câu 2:

\(\dfrac{1}{3x-2\sqrt{6x}+5}=\dfrac{1}{\left(3x-2\sqrt{6x}+2\right)+3}=\dfrac{1}{\left(x\sqrt{3}-\sqrt{2}\right)^2+3}\le\dfrac{1}{3}\)

Dấu "=" xảy ra <=> \(x=\sqrt{\dfrac{2}{3}}\)

Câu 3:

\(A=2014\sqrt{x}+2015\sqrt{1-x}=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)

Ta có: \(\left(\sqrt{x}+\sqrt{1-x}\right)^2=x+1-x+2\sqrt{x\left(1-x\right)}=1+2\sqrt{x\left(1-x\right)}\ge1\)

=> \(A=2014\left(\sqrt{x}-\sqrt{1-x}\right)+\sqrt{1-x}\ge2014+\sqrt{1-x}\ge2014\)

Dấu "=" xảy ra <=> x = 1

7 tháng 12 2018

Thanks bn nhìu

vui

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

21 tháng 5 2017

thi xong còn học chăm chỉ thế

22 tháng 5 2017

1)???

2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Vậy GTNN của A là 2 tại x=2.

3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)

\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)

Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)

15 tháng 4 2017

. P= x^2 +1/ x^2+ 2 +y^2+ 1/y^2 +2 (*) áp dụng bđt cosi cho các số dương x^2; y^2 và 1/x^2 và 1/y^2 được x^2+y^2 >= 2xy (1) và 1/X^2 +1/y^2 >=2/xy (2) thay vào (*) P >= 4+2xy+2/(xy) (**) Do x,y>0 áp dụng bđt cosi cho 2 số dương 2xy và 2/ (xy) ta được 2xy+2/(xy)>=2 căn (2xy . 2/(xy))=2 (3) thay trở lại (**) được P>= 4+2=6 Dấu bằng sảy ra khi dấu bằng ở (1)(2)(3) cùng đồng thời sảy ra tức là (1) x=y; (2) 1/x=1/y ;(3) xy=1/(xy) => x=y Vậy GTNN của biểu thức là 6 sảy ra khi x=y

16 tháng 4 2017

sai chỗ \(2xy+\dfrac{2}{xy}\ge2\sqrt[]{\dfrac{2}{xy}.2xy}=4\)

\(\Rightarrow A\ge4+4=8\)

9 tháng 12 2018

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)