K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

a/ \(\left|x\right|+\dfrac{4}{17}\)

Có: \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\dfrac{4}{17}\ge\dfrac{4}{17}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=0\)

=> \(A_{MIN}=\dfrac{4}{17}\Leftrightarrow x=0\)

b/ \(\left|x+2,8\right|-6,9\)

\(\left|x+2,8\right|\ge0\forall x\)

\(\Rightarrow\left|x+2,8\right|-6,9\ge-6,9\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2,8\)

Vậy \(B_{MIN}=-6,9\Leftrightarrow x=-2,8\)

14 tháng 6 2017

bạn ghi kí tự lớp 7 đuo85c không khó hiểu quá

15 tháng 6 2017

Ta có : \(\left|x\right|\ge0\forall x\in R\)

=> \(\left|x\right|+\frac{4}{7}\ge\frac{4}{7}\forall x\in R\)

=> GTNN của biểu thức là \(\frac{4}{7}\)  khi x = 0

15 tháng 6 2017

Ta có : |x - 2010| \(\ge0\forall x\in R\)

           |x - 1963| \(\ge0\forall x\in R\)

Nên |x - 2010| + |x - 1963| \(\ge0\forall x\in R\)

Mà x ko thể đồng thời có 2 giá trị nên

GTNN của biểu thức là : 2010 - 1963 = 47 khi x = 2010 hoặc 1963 

21 tháng 9 2023

\(A=\left|x+1\right|-3\\ min_A=-3.khi.x+1=0\Leftrightarrow x=-1\\ B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\\ max_B=-\dfrac{1}{4}.khi.\left(x-\dfrac{3}{7}\right)=0\Leftrightarrow x=\dfrac{3}{7}\)

22 tháng 9 2023

a)

A = |x + 1| - 3 ≥ 0 - 3 = -3

Dấu "=" xảy ra khi x + 1 = 0 hay x = -1

Do đó A đạt GTNN là -3 khi x = -1

b)

\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\le-0-\dfrac{1}{4}=-\dfrac{1}{4}\)

Dấu "=" xảy ra khi khi \(x-\dfrac{3}{7}=0\) hay \(x=\dfrac{3}{7}\)

Do đó B đạt GTLN là \(-\dfrac{1}{4}\) khi \(x=\dfrac{3}{7}\)

30 tháng 8 2023

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

30 tháng 8 2023

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

a: \(\Leftrightarrow\dfrac{39}{7}:\left\{x\cdot\dfrac{10}{13}+7.2\cdot\dfrac{257}{79}\right\}=\dfrac{15}{14}\)

\(\Leftrightarrow x\cdot\dfrac{10}{13}+\dfrac{9252}{395}=\dfrac{26}{5}\)

\(\Leftrightarrow x\simeq-23,69\)

b: TH1: x<1/2

Pt sẽ là 2-3x+1-2x=4

=>-5x+3=4

=>-5x=1

=>x=-1/5(nhận)

TH2: 1/2<=x<2/3

Pt sẽ là 2x-1+2-3x=4

=>1-x=4

=>x=-3(loại)

TH3: x>=2/3

Pt sẽ là 3x-2+2x-1=4

=>5x-3=4

=>5x=7

=>x=7/5(nhận)

12 tháng 10 2021

\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

12 tháng 10 2021

a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2

Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔  x = - 1,5

Vậy Bmin=  4,2 ⇔ x= -1,5

b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)

Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)

Vậy Cmax \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)

25 tháng 10 2021

\(A=\dfrac{1}{2}+\left|2x-1\right|\ge\dfrac{1}{2}\forall x\)

\(minA=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{\left|x\right|+2007}{2008}\ge\dfrac{0+2007}{2008}=\dfrac{2007}{2008}\)

\(minB=\dfrac{2007}{2008}\Leftrightarrow x=0\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 1:

$M=\frac{27}{x-15}-1$

Để $M$ min thì $\frac{27}{x-15}$ min. 

Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất 

$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15

$\Rightarrow x=14$

Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Bài 2:

\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)

$\Rightarrow x-4=-4\Leftrightarrow x=0$

14 tháng 6 2017

\(\left|x-2010\right|+\left|x-1963\right|=\left|x-2010\right|+\left|1963-x\right|\ge\left|x-2010+1963-x\right|=47\)

Dấu = xảy ra khi \(1963\le x\le2010\)

14 tháng 6 2017

a/ có: \(\left|x+\dfrac{1}{5}\right|-x=x+\dfrac{1}{5}-x=\dfrac{1}{5}\)\(\forall x\)

=> \(A=\dfrac{1}{5}+\dfrac{4}{7}=\dfrac{27}{35}\)

=> A k có GTNN

b/ \(B=\left|x-2010\right|+\left|x-1963\right|=\left|x-2010\right|+\left|1963-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(\left|x-2010\right|+\left|1963-x\right|\ge\left|x-2010+1963-x\right|=\left|-47\right|=47\)

Đẳng thức xảy ra khi \(1963\le x\le2010\)

p/s: Đề a sai ak

14 tháng 8 2023

a/

\(VT=\dfrac{\left(x+4\right)-\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}+\dfrac{\left(x+8\right)-\left(x+4\right)}{\left(x+4\right)\left(x+8\right)}+\dfrac{\left(x+14\right)-\left(x+8\right)}{\left(x+8\right)\left(x+14\right)}=\)

\(=\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+14}=\)

\(=\dfrac{1}{x+2}-\dfrac{1}{x+14}=\dfrac{12}{\left(x+2\right)\left(x+14\right)}\)

\(\Rightarrow\dfrac{12}{\left(x+2\right)\left(x+14\right)}=\dfrac{x}{\left(x+2\right)\left(x+14\right)}\left(x\ne-2;x\ne-14\right)\)

\(\Rightarrow x=12\)

 

 

14 tháng 8 2023

\(\dfrac{x}{2023}+\dfrac{x+1}{2022}+...+\dfrac{x+2022}{1}+2023=0\)

 

 

\(\dfrac{1}{2023}x+\dfrac{1}{2022}x+\dfrac{1}{2022}\cdot1+...+\dfrac{1}{1}x+\dfrac{1}{1}\cdot2022+2023=0\)

 

\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)+\left(\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\right)=0\)

\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)=\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\)

\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)

\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2022}{2022}+\dfrac{2}{2021}+\dfrac{2021}{2021}+...+\dfrac{2022}{1}+\dfrac{1}{1}}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)

\(x=\dfrac{\dfrac{2023}{2022}+\dfrac{2023}{2021}+...+\dfrac{2023}{1}}{\dfrac{1}{2022}+\dfrac{1}{2021}+...+\dfrac{1}{1}}=2023\)

Vậy x = 2023