K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

g = 11 - | 2/3x + 1/2 |

=> g <= 11

Dấu "=" xảy ra khi :

\(\frac{2}{3x}+\frac{1}{2}=0\)

\(\frac{2}{3x}=-\frac{1}{2}\)

\(x=-\frac{4}{3}\)

Vậy gtln của g = 11 khi x = -4/3

Học tốt~

6 tháng 8 2018

Ta có : | 2/3x + 1/2 | luôn lớn hoặc bằng không

=> 11 - | 2/3x + 1/2 | luôn bé hơn ( chỗ này mk nhầm nha ) hoặc bằng 11

hay G <= 11

Dấu " = " xảy ra <=> 2/3x + 1/2 = 0

                                  2/3x = -1/2

                                  -3x = 4

                                     x = -4/3

Vậy,.........

14 tháng 2 2016

1/2 ở bài 1 là phân số à

19 tháng 10 2017

a) \(F=2\left|3x-2\right|-1\)

\(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)

\(\Rightarrow2\left|3x-2\right|-1\ge-1\)

''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)

=> \(F_{min}=-1\)

b) \(G=x^2+3\left|y-2\right|-1\)

Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)

''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy \(G_{min}=-1\)

19 tháng 10 2017

\(A=2\left|3x-2\right|-1\ge-1\)

Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)

\(B=x^2+3\left|y-2\right|-1\ge-1\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

6 tháng 8 2018

GTLN của G=11 tại x=-3/4

12 tháng 7 2018

1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath

2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

3/ 

a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0

=> 13-x = 1 => x = 12

Khi đó \(A=\frac{17}{13-12}=17\)

Vậy Amax = 17 khi x = 12

b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)

Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0

=>11-x=1 => x=10

Khi đó \(B=\frac{10}{11-10}=10\)

Vậy Bmax = 10 khi x=10

13 tháng 7 2018

bạn trả lời đúng rùi

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3