K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

a, Ta có :

 \(M=4\left|x+3\right|\ge0\) với \(\forall x\)

\(\Rightarrow7-4\left|x+3\right|\le7 với \forall x\)

Dấu '' = '' xảy ra khi:

 \(\left|x+3\right|=0\\ \Rightarrow x+3=0\\ \Rightarrow x=-3\)

    Vậy GTLN của \(M=7-4\left|x+3\right|\) là  khi \(x=-3\)

21 tháng 7 2021

b,

Để \(N=\dfrac{18}{\left|x-2\right|+9}+5\) có giá trị lớn nhất thì \(\dfrac{18}{\left|x-2\right|+9}\) phải lớn nhất

\(\Rightarrow\left|x-2\right|+9\) Phải nhỏ nhất và lớn hơn 0

Ta có:

\(\left|x-2\right|\ge0 với \forall x\)

\(\Rightarrow\left|x-2\right|+9\ge0 với \forall x\)

  Dấu '' = '' xảy ra khi:

\(\left|x-2\right|=0\\ \Rightarrow x-2=0\\ \Rightarrow x=2\) 

\(\Rightarrow\dfrac{18}{\left|x-2\right|+9}+5=2+5=7\)

    Vậy GTLN của \(N=\dfrac{18}{\left|x-2\right|+9}+5\) là 7 khi \(x=2\)

13 tháng 9 2017

Ta có : \(A=\left|x-5\right|-\left|x-7\right|\ge\left|x-5-x+7\right|=2\)

Vậy \(A_{min}=2\) khi \(5\le x\le7\)

13 tháng 9 2017
phần B
DD
9 tháng 7 2021

a) \(\left|x-5\right|-\left|x-7\right|=\left|x-5\right|-\left|x-5-2\right|\ge\left|x-5\right|-\left(\left|x-5\right|-2\right)=2\)

Dấu \(=\)khi \(-2\left(x-5\right)\ge0\Leftrightarrow x\le5\).

b) \(\left|125-x\right|+\left|x+65\right|\ge\left|125-x+x+65\right|=190\)

Dấu \(=\)khi \(\left(125-x\right)\left(x+65\right)\ge0\Leftrightarrow-65\le x\le125\).

25 tháng 9 2018

gọi ý:

a,b biến đổi làm sao để:

a) áp dụng:  \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

b) áp dụng:  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

c) Đánh giá:  \(\left|x-2015\right|^{2015}\ge0\)

                     \(\left(y-2016\right)^{2016}\ge0\)

=>  \(C\ge1\)khi  \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)

25 tháng 9 2018

a ) A = | x - 5 | - | x - 7 |

Nhận xét :

| x - 5 | - | x - 7 | < | x - 5 - x + 7 |

=> A < | 2 |

=> A < 2

Dấu "=" xảy ra khi : ( x - 5  ) ( x - 7 ) > 0 

                            TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)

                                 => \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)

                                    => x > 7

                             TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)

                                   => \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)

                                      => x < 5

Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7

b ) B = | 125 - x | + | x - 65 |

Ta có : 

| 125 - x | + | x - 65 | > | 125 - x + x - 65 |

=> B > | 60 |

=> B > 60

Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0

TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)

=> 65 < x < 125

TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)

=> 125 < x < 65 ( vô lí )

Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125

c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1

Nhận xét :

| x - 2015 |2015 > 0 với mọi x

( y - 2016 )2016 > 0 với mọi x

=> | x - 2015 |2015 + ( y - 2016 )2016 > 0 

=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1 

=> C > 1

Dấu "=" xảy ra khi : x - 2015 = 0

                               và y - 2016 = 0

=> x = 2015

      y = 2016

Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016