Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
Áp dụng \(|a|\ge0\)với \(\forall a\)Dấu "=" xảy ra khi \(a\ge0\)
Ta có: \(|x-2013|+|x-2015|=|x-2013|+|2015-x|\ge x-2013+2015-x=2với\forall x\)
Dâu "=" xảy ra khi \(x-2013\ge0\)và\(2015-x\ge0\)\(\Leftrightarrow\)\(2013\le x\le2015\)
Lại có: \(|x-2014|\ge0với\forall x\)
Dấu "=" xảy ra khi \(x-2014=0\Leftrightarrow x=2014\)
Do đó \(A\ge2+0=2với\forall x\)
Dấu "=" xảy ra khi \(2013\le x\le2015\)và \(x=2014\)\(\Leftrightarrow\)\(x=2014\)
Vậy \(minA=2\)khi\(x=2014\)
Ta có: \(\left|x-2013\right|+\left|x-2015\right|=\left|x-2013\right|+\left|2015-x\right|\ge\left|x-2013+2015-x\right|\)
\(\left|x-2013\right|+\left|2015-x\right|\ge2\)\(\left(1\right)\)
Và \(\left|2014-x\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|\ge2\)
Mà \(\left|x-2013\right|+\left|2014-x\right|+\left|2015-x\right|=A\)
\(\Rightarrow A\)có GTNN là 2
Từ\(\left(1\right)\)
\(\Rightarrow\)Dấu \("="\)xảy ra khi \(\left(x-2013\right)\left(2015-x\right)\ge0\)
\(\Rightarrow2013\le x\le2015\)
\(\Rightarrow x=2014\)
Vậy, \(A\)có GTNN là 2 khi\(x=2014\)
\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)
Vậy,..........
Ta có : \(A=\left|x-5\right|-\left|x-7\right|\ge\left|x-5-x+7\right|=2\)
Vậy \(A_{min}=2\) khi \(5\le x\le7\)