Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)
b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)
\("="\Leftrightarrow x=3\)
c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow x=-\frac{1}{4}\)
d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)
\("="\Leftrightarrow x=\frac{5}{4}\)
e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)
\("="\Leftrightarrow x=1\)
f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)
\("="\Leftrightarrow x=\sqrt{2}\)
g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)
\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)
Đạo hàm đi bạn :D Cho nhanh
\(y=f\left(x\right)=x^4-2x^2\)
\(\Rightarrow f'\left(x\right)=4x^3-4x\)
\(f'\left(x\right)=0\Leftrightarrow4x^3-4x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)
\(f\left(1\right)=-1;f\left(-2\right)=8;f\left(-1\right)=-1;f\left(0\right)=0\)
\(\Rightarrow y_{min}=-1;"="\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(y_{max}=8;"="\Leftrightarrow x=-2\)
Đặt \(x^2=t\left(0\le t\le4\right)\)
\(y=f\left(t\right)=t^2-2t\)
\(minf\left(t\right)=min\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(1\right)=-1\)
\(maxf\left(t\right)=max\left\{f\left(0\right);f\left(4\right);f\left(1\right)\right\}=f\left(4\right)=8\)
\(min=-1\Leftrightarrow x=\pm1\)
\(max=8\Leftrightarrow x=-2\)
Chắc là N? Vì M mà sao đằng sau lại là \(NA^2+NB^2\)?
Do N thuộc \(\Delta\) nên tọa độ có dạng \(N\left(6t;4t+2\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(6t-1;4t\right)\\\overrightarrow{BN}=\left(6t+3;4t-3\right)\end{matrix}\right.\)
\(\Rightarrow NA^2+NB^2=\left(6t-1\right)^2+16t^2+\left(6t+3\right)^2+\left(4t-3\right)^2=104t^2+19\ge19\)
Dấu "=" xảy ra khi \(t=0\Rightarrow N\left(0;2\right)\)
a: \(\Leftrightarrow\left(2x-3;y+5\right)\in\left\{\left(1;20\right);\left(2;10\right);\left(4;5\right);\left(5;4\right);\left(10;2\right);\left(20;1\right)\right\}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=1\\y+5=20\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left(2;15\right)\)
b: \(\Leftrightarrow\left(x-7;y+1\right)\in\left\{\left(1;18\right);\left(2;9\right);\left(3;6\right);\left(6;3\right);\left(9;2\right);\left(18;1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(8;17\right);\left(9;8\right);\left(10;5\right);\left(13;2\right);\left(16;1\right);\left(25;0\right)\right\}\)
a: y=x+15-3x=-2x+15
x thuộc (-3;5) nên -2x thuộc (-10;6)
=>\(y\in\left(5;21\right)\)
y max=21 khi x=5
b: y=6x-x^2=-x^2+6x
x thuộc (0;6) nên -x^2 thuộc (-36;0)
6x thuộc (0;36)
=>-x^2+6x thuộc (-36;36)
y max=36 khi x=6