Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{1-x}+\sqrt{x+1}\)
\(A^2=\left(\sqrt{1-x}\cdot1+\sqrt{x+1}\cdot1\right)^2\)
Áp dụng BĐT Bunhiacospki ta có:
\(A^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)\)
\(A^2\le4\)
\(A\le2\)
\(A_{max}=2\Leftrightarrow x=0\)
E ms tìm dc MAX thôi ah
ĐKXĐ: ....
a/ \(A\le\sqrt{2\left(1-x+1+x\right)}=2\Rightarrow A_{max}=2\) khi \(x=0\)
\(A\ge\sqrt{1-x+1+x}=\sqrt{2}\Rightarrow A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
b/ \(B\le\sqrt{2\left(x-2+6-x\right)}=2\sqrt{2}\Rightarrow B_{max}=2\sqrt{2}\) khi \(x=4\)
\(B\ge\sqrt{x-2+6-x}=2\Rightarrow B_{min}=2\) khi \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
c/ \(A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\)
\(\Rightarrow A^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5.5=25\)
\(\Rightarrow-5\le A\le5\)
\(A_{max}=5\) khi \(x=y=1\)
\(A_{min}=-5\) khi \(x=y=-1\)
Bài 3:
Áp dụng BĐT Bunhiacopxky ta có:
\((2x+3y)^2\leq (2x^2+3y^2)(2+3)\)
\(\Leftrightarrow A^2\leq 5(2x^2+3y^2)\leq 5.5\)
\(\Leftrightarrow A^2\leq 25\Leftrightarrow A^2-25\leq 0\)
\(\Leftrightarrow (A-5)(A+5)\leq 0\Leftrightarrow -5\leq A\leq 5\)
Vậy \(A_{\min}=-5\Leftrightarrow (x,y)=(-1;-1)\)
\(A_{\max}=5\Leftrightarrow x=y=1\)
Bài 4:
Lời giải:
\(B=\sqrt{x-1}+\sqrt{5-x}\)
\(\Rightarrow B^2=(\sqrt{x-1}+\sqrt{5-x})^2=4+2\sqrt{(x-1)(5-x)}\)
Vì \(\sqrt{(x-1)(5-x)}\geq 0\Rightarrow B^2\geq 4\)
Mặt khác \(B\geq 0\)
Kết hợp cả hai điều trên suy ra \(B\geq 2\)
Vậy \(B_{\min}=2\).
Dấu bằng xảy ra khi \((x-1)(5-x)=0\Leftrightarrow x\in\left\{1;5\right\}\)
---------------------------------------
\(A=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)
\(\Rightarrow A^2=2x^2+2+2\sqrt{(x^2+x+1)(x^2-x+1)}\)
\(\Leftrightarrow A^2=2x^2+2+2\sqrt{(x^2+1)^2-x^2}=2x^2+2+2\sqrt{x^4+1+x^2}\)
Vì \(x^2\geq 0\forall x\in\mathbb{R}\)
\(\Rightarrow A^2\geq 2+2\sqrt{1}\Leftrightarrow A^2\geq 4\)
Mà $A$ là một số không âm nên từ \(A^2\geq 4\Rightarrow A\geq 2\)
Vậy \(A_{\min}=2\Leftrightarrow x=0\)
Áp dụng bđt \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5^2\)
\(\Rightarrow-5\le2x+3y\le5\)
Dấu bằng xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)hay \(\frac{\sqrt{2}x}{\sqrt{3}y}=\frac{\sqrt{2}}{\sqrt{3}}\Leftrightarrow x=y\)
Vậy \(A\text{ min }=-5\Leftrightarrow x=y=-1\)
\(A\text{ max }=5\Leftrightarrow x=y=1\)