K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

\(C=x^2-4x+8\)

\(C=x^2-4x+4+4\)

\(C=\left(x-4\right)^2+4\ge4\)

Dấu bằng xảy ra 

\(\Leftrightarrow x-4=0\)

\(\Leftrightarrow x=4\)

Vậy Min A = 4 <=> x= 4

6 tháng 12 2019

giải lun câu này dùm ik: D= x- x^2+ 3. Tìm GTNN hoặc GTLN

25 tháng 9 2020

             Bài làm :

\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)

Vì (x-10)2 ≥ 0 với mọi x

\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)

Dấu "=" xảy ra khi

(x-10)2 = 0

<=> x-10=0

<=> x=10

Vậy GTNN của biểu thức là : 1920 <=> x=10

\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

Vì -(x-2)2 ≤ 0 với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảu ra khi :

x-2=0

<=> x=2

Vậy GTLN của biểu thức là -1 <=> x=2

25 tháng 9 2020

x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x

Dấu "=" xảy ra <=> x = 10 

Vậy GTNN của biểu thức = 1920 <=> x = 10

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x

Dấu "=" xảy ra <=> x = 2

Vậy GTLN của biểu thức = -1 <=> x = 2

1: A=(x-1)^2>=0

Dấu = xảy ra khi x=1

5: B=-(x^2+6x+10)

=-(x^2+6x+9+1)

=-(x+3)^2-1<=-1

Dấu = xảy ra khi x=-3

2: B=x^2+4x+4-9

=(x+2)^2-9>=-9

Dấu = xảy ra khi x=-2

6: =-(x^2-5x-3)

=-(x^2-5x+25/4-37/4)

=-(x-5/2)^2+37/4<=37/4

Dấu = xảy ra khi x=5/2

3: =x^2+x+1/4-1/4

=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2

7: =4x^2+4x+1-2

=(2x+1)^2-2>=-2

Dấu = xảy ra khi x=-1/2

2 tháng 12 2016

GTLN:lớn lắm

GTNN:3

7 tháng 7 2021

a,\(A=\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(x^2+6x+5\right)\left(x^2+6x+8\right)\)

đặt \(x^2+6x+5=t=>t\left(t+3\right)=t^2+3t=t^2+2.\dfrac{3}{2}t+\dfrac{9}{4}-\dfrac{9}{4}\)

\(=\left(t+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}< =>t=\dfrac{-3}{2}\)

\(=>A\)\(=-\dfrac{3}{2}\left(-\dfrac{3}{2}+3\right)=-2,25\)

Vậy Min A\(=-2,25\)

b,\(B=-x^2-4x-9y^2-6y-6\)

\(=-\left(x^2+4x+4\right)-\left(3y\right)^2-2.3y-1-1\)

\(=-\left(x+2\right)^2-\left(3y+1\right)^2-1\le-1\)

dấu"=' xảy ra\(< =>x=-2,y=-\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

a.

$(x+1)(x+2)(x+4)(x+5)=(x+1)(x+5)(x+2)(x+4)=(x^2+6x+5)(x^2+6x+8)$

$=a(a+3)$ với $a=x^2+6x+5$

$=a^2+3a=(a^2+3a+\frac{9}{4})-\frac{9}{4}$

$=(a+\frac{3}{2})^2-\frac{9}{4}$

$=(x^2+6x+\frac{13}{2})^2-\frac{9}{4}\geq \frac{-9}{4}$

Vậy gtnn của biểu thức là $\frac{-9}{4}$. Giá trị này đạt tại $x^2+6x+\frac{13}{2}=0$

$\Leftrightarrow x=\frac{-6\pm \sqrt{10}}{2}$

28 tháng 10 2019

x^2 -4x+5+y^2+2y

=(x^2-4x+4)+(y^2+2y +1)

=(x-2)^2+(y+1)^2

vì (x-2 )^2 >= 0

(y+1)^2>=0

=)) (x-2)^2 +(y+1)^2 >=0

dấu "=" xảy ra 

<=>x-2 =0 =)x=2

và y+1=0 =)y=-1

vậy..........

28 tháng 10 2019

H = x2 - 4x + 5 + y2 + 2y

H = ( x- 4x + 4) + ( y+ 2y + 1 ) 

H = ( x - 2 )2 + ( y + 1 )\(\ge\)0

Dấu = xảy ra\(\Leftrightarrow\)x - 2 = 0 và y + 1 = 0

                        \(\Rightarrow\)x = 2 và y = - 1

Vậy : Min H = 0 \(\Leftrightarrow\)x = 2 và y = - 1

2 tháng 9 2021

a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)

\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)

\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

a: Ta có: \(N=-x^2-x-1\)

\(=-\left(x^2+x+1\right)\)

\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: ta có: \(B=3x^2+4x-13\)

\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)

\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)