\(N=5x^2+4y^2+4xy+4x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

\(N=5x^2+4y^2+4xy+4x\)

\(N=\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)-1\)

\(N=\left(x+2y\right)^2+\left(2x+1\right)^2-1\)

Mà  \(\left(x+2y\right)^2\ge0\forall x;y\)

      \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow N\ge-1\)

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+2y=0\\2x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=-\frac{1}{2}\end{cases}}\)

Vậy ...

31 tháng 8 2018

\(M=4x^2+4xy+2y\left(y-2\right)=4x^2+4xy+2y^2-4y.\)

\(=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-4\)

\(=\left(2x+y\right)^2+\left(y-2\right)^2-4\ge-4\)

MinM=-4

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x-y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

NV
4 tháng 11 2019

\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)

\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)

\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)

\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)

\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)

\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

7 tháng 11 2018

Giải sơ qua:

1)\(B=4x^2-4xy+2y^2+1=\left(2x-y\right)^2+y^2+1\ge1\)

2) có vẻ sai đề

7 tháng 11 2018

Đúng đề hết nhé

16 tháng 12 2019

\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)

\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)

\(( y^2 + 4y + 4 ) + 2010\)

\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)

\(\ge\)\(2010\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)

\(\Rightarrow\)\(x = 1 và y = - 2\)

\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)

16 tháng 8 2018

a) \(A=x^2-6x+25\)

\(=\left(x^2-6x\right)+25\)

\(=\left(x^2-6x+3^2\right)+16\)

\(=\left(x-3\right)^2+16\)

Ta có \(\left(x-3\right)^2\ge0\\ \Rightarrow\left(x-3\right)^2+16\ge16\)

Dấu ''='' xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy GTNT của A là 16 khi x = 3

16 tháng 8 2018

a) \(A=x^2-6x+25\)

\(A=x^2-2.x.3+9-9+25\)

\(A=\left(x-3\right)^2+16\)

\(\left(x-3\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

\(\Rightarrow Amin=16\Leftrightarrow x-3=0\Rightarrow x=3\)

Vậy Amin = 16 <=> x = 3

b) \(B=5x^2-4x+3\)

\(B=5\left(x^2-\dfrac{4}{5}x+\dfrac{3}{5}\right)\)

\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}-\dfrac{4}{25}+\dfrac{3}{5}\right)\)

\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{11}{25}\right)\)

\(B=5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\)

\(5\left(x-\dfrac{2}{5}\right)^2\ge0\) với mọi x

\(\Rightarrow5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\ge\dfrac{11}{5}\)

\(\Rightarrow Bmin=\dfrac{11}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Rightarrow x=\dfrac{2}{5}\)

Vậy Bmin = 11/5 <=> x = 2/5

c) \(C=x^2-4xy+5y^2-4y+13\)

\(C=x^2-2.x.2y+\left(2y\right)^2+y^2-2.y.2+4+9\)

\(C=\left(x-2y\right)^2+\left(y-2\right)^2+9\)

\(\left(x-2y\right)^2+\left(y-2\right)^2\ge0\) với mọi x và y

\(\Rightarrow\left(x-2y\right)^2+\left(y-2\right)^2+9\ge9\)

\(\Rightarrow Cmin=9\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

Vậy Cmin = 9 <=> x = 4 và y = 2