![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ :\(x\ge0\)
\(x-4\sqrt{x}+5\)
\(=x-4\sqrt{x}+4+1\)
\(=\left(\sqrt{x}-2\right)^2+1\ge1\forall x\ge0\)
Dấu"=" xả ra <=> \(\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a) ĐK: $x\geq 0$
Với $x\geq 0$ ta thấy $x+\sqrt{x}+5\geq 5$
$\Rightarrow A=\frac{3}{x+\sqrt{x}+5}\leq \frac{3}{5}$
Vậy $A_{\max}=\frac{3}{5}$ khi $x=0$
b) ĐK: $x\geq 0$
Với $x\geq 0$ thì $x+\sqrt{x}+3\geq 3$
$\Rightarrow B=\frac{-5}{x+\sqrt{x}+3}\geq \frac{-5}{3}$
Vậy $B_{\min}=\frac{-5}{3}$ khi $x=0$
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
ĐK để tồn tại các biểu thức là $x\geq 0$
a) Ta thấy: $\sqrt{x}\geq 0\Rightarrow \sqrt{x}+5\geq 5$
$\Rightarrow A=\frac{2}{\sqrt{x}+5}\leq \frac{2}{5}$
Vậy $A_{\max}=\frac{2}{5}$ khi $x=0$
b) $\sqrt{x}+7\geq 7$
$\Rightarrow \frac{1}{\sqrt{x}+7}\leq \frac{1}{7}$
$\Rightarrow B=\frac{-3}{\sqrt{x}+7}\geq \frac{-3}{7}$
Vậy $B_{\min}=\frac{-3}{7}$ khi $x=0$
c)
$2\sqrt{x}+1\geq 1\Rightarrow C=\frac{5}{2\sqrt{x}+1}\leq 5$
Vậy $C_{\max}=5$ khi $x=0$
d)
$3\sqrt{x}+2\geq 2\Rightarrow \frac{1}{3\sqrt{x}+2}\leq \frac{1}{2}$
$\Rightarrow D=\frac{-7}{3\sqrt{x}+2}\geq \frac{-7}{2}$
Vậy $B_{\min}=\frac{-7}{2}$ khi $x=0$
![](https://rs.olm.vn/images/avt/0.png?1311)
\(-2x+4\sqrt{x}+1\)
\(=-2\left(x-2\sqrt{x}+1\right)+3\)
\(=-2\left(\sqrt{x}-1\right)^2+3\le3\left(\forall x\ge0\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
- \(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
- Không tồn tại giá trị nhỏ nhất.
![](https://rs.olm.vn/images/avt/0.png?1311)
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Ta có điều kiện xác định \(x\ge0\)
xét \(x-3\sqrt{x}+5=x-\frac{2.3}{2}\sqrt{x}+\frac{9}{4}+\frac{11}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Do đó \(\frac{1}{x-3\sqrt{x}+5}\le\frac{4}{11}\).Vậy GTNN của biểu thức là \(\frac{4}{11}\)khi \(\sqrt{x}-\frac{3}{2}=0\)hay \(x=\frac{9}{4}\)
Biểu thức trên không có GTLN