Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK để tồn tại các biểu thức là $x\geq 0$
a) Ta thấy: $\sqrt{x}\geq 0\Rightarrow \sqrt{x}+5\geq 5$
$\Rightarrow A=\frac{2}{\sqrt{x}+5}\leq \frac{2}{5}$
Vậy $A_{\max}=\frac{2}{5}$ khi $x=0$
b) $\sqrt{x}+7\geq 7$
$\Rightarrow \frac{1}{\sqrt{x}+7}\leq \frac{1}{7}$
$\Rightarrow B=\frac{-3}{\sqrt{x}+7}\geq \frac{-3}{7}$
Vậy $B_{\min}=\frac{-3}{7}$ khi $x=0$
c)
$2\sqrt{x}+1\geq 1\Rightarrow C=\frac{5}{2\sqrt{x}+1}\leq 5$
Vậy $C_{\max}=5$ khi $x=0$
d)
$3\sqrt{x}+2\geq 2\Rightarrow \frac{1}{3\sqrt{x}+2}\leq \frac{1}{2}$
$\Rightarrow D=\frac{-7}{3\sqrt{x}+2}\geq \frac{-7}{2}$
Vậy $B_{\min}=\frac{-7}{2}$ khi $x=0$
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1) \(A=\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=3-2\sqrt{2}\)
\(B=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}-1+2-\sqrt{3}=1\)
\(C=\sqrt{63}-\sqrt{28}-\sqrt{7}=3\sqrt{7}-2\sqrt{7}-\sqrt{7}=0\)
\(D=\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}=\frac{4}{2}=2\)
\(M=\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}.\frac{\sqrt{5}-1}{\sqrt{5}\left(\sqrt{5}-1\right)}=\frac{2}{4}=\frac{1}{2}\)
- \(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)
Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)
Max A = 3 <=> x = 0
- Không tồn tại giá trị nhỏ nhất.
Lời giải:
a) ĐK: $x\geq 0$
Với $x\geq 0$ ta thấy $x+\sqrt{x}+5\geq 5$
$\Rightarrow A=\frac{3}{x+\sqrt{x}+5}\leq \frac{3}{5}$
Vậy $A_{\max}=\frac{3}{5}$ khi $x=0$
b) ĐK: $x\geq 0$
Với $x\geq 0$ thì $x+\sqrt{x}+3\geq 3$
$\Rightarrow B=\frac{-5}{x+\sqrt{x}+3}\geq \frac{-5}{3}$
Vậy $B_{\min}=\frac{-5}{3}$ khi $x=0$