Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) A = 9x2 + 42x + 49
= (3x + 7)2 (1)
Thay x = 1 vào (1)
Ta có: (3.1 + 7)2
= 102
= 100
Bài 1:
a) C = 4x2 - 4x
= [(2x)2 - 2.2x.1 + 1] - 1
= (2x - 1)2 - 1
Ta có: (2x - 1)2 ≥ 0 với ∀x
Nên: (2x - 1)2 - 1 ≥ -1 với ∀x
Dấu "=" xảy ra ⇔ (2x - 1)2 = 0
2x - 1 = 0
2x = 1
x = \(\frac{1}{2}\)
Vậy GTNN của biểu thức C là -1 khi x = \(\frac{1}{2}\)
Bài 2:
b) B = (x + 4)(2 - x)
= 2x - x2 + 8 - 4x
= -x2 - 2x + 8
= -(x2 + 2x + 1 - 1) + 8
= -(x + 1)2 + 9
Ta có: -(x + 1)2 ≤ 0 với ∀x
Nên: -(x + 1)2 + 9 ≤ 9 với ∀x
Dấu "=" xảy ra ⇔ -(x + 1)2 = 0
x + 1 = 0
x = -1
Vậy GTLN của biểu thức B là 9 khi x = -1
Bạn ơi bài 2a có đúng đề bài không vậy bạn?
Bài 1:
\(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\Rightarrowđpcm\)Bài 2:
\(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)Với mọi giá trị của x ta có:
\(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy GTNN của A là \(\dfrac{11}{4}\)
Để \(A=\dfrac{11}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4=5x^2+5=5\left(x^2+1\right)\)
Với mọi giá trị của x ta có:
\(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow5\left(x^2+1\right)\ge5\)
Vậy \(Min_B=5\)
Để B = 5 thì \(x^2=0\Rightarrow x=0\)
Bài 3:
\(A=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+5\le5\)Vậy \(Max_A=5\)
Để A = 5 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\)
Với mọi giá trị của x ta có :
\(\left(2-x\right)^2\ge0\Rightarrow4-\left(2-x\right)^2\le4\)
Vậy \(Max_B=4\)
Để B = 4 thì \(2-x=0\Rightarrow x=2\)
Bài 1: CMR các biểu thức sau luôn dương với mọi giá trị của biểu thức
\(2x^2+2x+1\)
Ta có: \(2x^2>2x\forall x\) mà \(2x^2\ge0\)
\(\Rightarrow2x^2-2x\ge0\)
Vậy \(2x^2+2x+1\ge1\) (đpcm)
M = 4x2 + 4x + 5
M = (4x2 + 4x + 1) + 4
M = (2x + 1)2 + 4
Vì (2x + 1)2 ≥ 0
=> (2x + 1)2 + 4 ≥ 4 <=> M ≥ 4
=> GTNN của M bằng 4
Dấu "=" xảy ra khi\(\left(2x+1\right)^2=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy GTNN của M bằng 4
Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinA = 3 <=> x = -1
\(2x^2+4x+5\)
\(=2\left(x^2+2x+\frac{5}{2}\right)\)
\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)
\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)
\(=2\left(x+1\right)^2+3\ge3\)
Dấu '' = '' xảy ra khi
\(\Leftrightarrow2\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy............................
P/s : sai thì thôi nha
a ) \(A=x^2-4x-7\)
\(A=\left(x^2+2.x.2+2^2\right)-11\)
\(A=\left(x+2\right)^2-11\)
Ta có : \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2-11\ge-11\)
Vậy GTNN của \(A=-11\)
Khi : \(x+2=0\)
\(x=-2\)
b ) \(B=-x^2+4x-7\)
\(B=-\left(x^2+2.x.2-2^2\right)-3\)
\(B=-\left(x-2\right)^2-3\)
Ta có : \(-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2-3\le-3\)
Vậy GTLN của \(B=-3\)
Khi \(x-2=0\)
\(x=2\)
a)
\(A=\left(x^2-4x+4\right)-11\)
\(=\left(x-2\right)^2-11\)
Ta có
\(\left(x-2\right)^2-11\ge-11\)
Dấu " = " xảy ra khi x = 2
Vậy MINA= - 11 khi x=2
b)
\(B=-\left(x^2-4x+4\right)-3\)
\(B=-\left(x-2\right)^2-3\)
Ta có
\(-\left(x-2\right)^2-3\le-3\) với mọi x
Dấu " = " xảy ra khi = 2
Vậy MAXB= - 3 khi x = 2
- Đặt \(A=4x^2+4x+5\)
- Ta có: \(A=4x^2+4x+5\)
\(\Leftrightarrow A=\left(4x^2+4x+1\right)+4\)
\(\Leftrightarrow A=\left(2x+1\right)^2+4\)
- Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(2x+1\right)^2+4\ge4\forall x\)
\(\Rightarrow A_{min}=4\)
- Dấu "=" xảy ra khi: \(2x+1=0\)\(\Leftrightarrow\)\(2x=-1\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\left(TM\right)\)
Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
bài 1: phân tích đa thức thành nhân tử:
a) \(\dfrac{1}{4}x^2-5xy+25y^2\)
\(=\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.5y+\left(5y\right)^2\)
\(=\left(\dfrac{1}{2}x-5y\right)^2\)
b) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
c) \(125-x^6\)
\(=5^3-\left(x^2\right)^3\)
\(=\left(5-x^2\right)\left[5^2+5x^2+\left(x^2\right)^2\right]\)
\(=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)
Bài 3 .
a) A =x2 + y2 - 4x + 2y + 5
A =( x2 + 2y + 1 ) + ( y2 - 2.2x + 22)
A = ( x + 1)2 +( y - 2)2
Do : ( x + 1)2 lớn hơn hoặc bằng 0 với mọi x
Suy ra : ( y - 2)2
Vậy , Amin = 0 khi và chỉ khi : x + 1 = 0 -> x = -1
y - 2 =0 -> y = 2
b)B = -4x2 - 9y2 - 4x + 6y + 3
B = - [ (2x)2 + 2.2x + 1] - [ ( 3y)2 - 2.3y + 1] + 5
B = -( 2x + 1)2 - ( 3y - 1)2 + 5
Do : -( 2x + 1)2 nhỏ hơn hoặc bằng 0 với mọi x
Suy ra : -( 2x + 1)2 + 5 nhỏ hơn hoặc bằng 5 với mọi x
-( 3y - 1)2 nhỏ hơn hoặc bằng 0 với mọi x
Suy ra : - ( 3y - 1)2 + 5 nhỏ hơn hoặc bằng 5 với mọi x
Vậy , Bmax = 5 khi và chỉ khi 2x + 1 =0 -> x = \(-\dfrac{1}{2}\)
3y - 1 = 0 -> y = \(\dfrac{1}{3}\)
\(A=\left(x^2+x+1\right)^2=\left[\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}\right]^2=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\frac{9}{16}\)\("="\Leftrightarrow x=-\frac{1}{2}\)
\(B=x^4-6x^3+10x^2-6x+9\)
\(B=\left(x^4-6x^3+9x^2\right)+\left(x^2-6x+9\right)\)
\(B=x^2\left(x^2-6x+9\right)+\left(x^2-6x+9\right)=\left(x^2+1\right)\left(x-3\right)^2\ge0\)\("="\Leftrightarrow x=3\)
\(M=\frac{3}{4x^2-4x+5}=\frac{3}{4x^2-4x+1+4}=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\("="\Leftrightarrow x=\frac{1}{2}\)
bạn giải thích bài 2 hộ mình, tại sao lại có ≤ \(\frac{3}{4}\)vậy? mình đi học thấy nhiều đứa viết thế cô hỏi ở đâu ra mà ko bt.
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
Ta có: \(4x^2+4x+5\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1+4\)
\(=\left(2x+1\right)^2+4\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi
\(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(4x^2+4x+5\) là 4 khi \(x=\frac{-1}{2}\)
\(4x^2+4x+1+4=\left(2x+1\right)^2+4\ge4\)
Vậy MIN =4 với x=-1/2