Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=2x^2+12x+11\)
\(=2\left(x^2+6x+\dfrac{11}{2}\right)\)
\(=2\left(x^2+6x+9-\dfrac{7}{2}\right)\)
\(=2\left(x+3\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=-3
\(A=2\left(x^2+6x+36\right)-61=2\left(x+6\right)^2-61\ge-61\\ A_{min}=-61\Leftrightarrow x=-6\\ B=-\left(x^2-18x+81\right)+100=-\left(x-9\right)^2+100\le100\\ B_{max}=100\Leftrightarrow x=9\)
Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+5y^2-22y+28\)
\(=x^2-x\left(4y-10\right)+5y^2-22y+28\)
\(=x^2-2.x.\frac{4y-10}{2}+\left(\frac{4y-10}{2}\right)^2+5y^2-22y-\left(\frac{4y-10}{2}\right)^2+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-\frac{16y^2-80y+100}{4}+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-4y^2+20y-25+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+y^2-2y+3=\left(x-\frac{4y-10}{2}\right)^2+y^2-2.y.1+1^2+2\)
\(=\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\)
Vì \(\left(x-\frac{4y-10}{2}\right)^2\ge0;\left(y-1\right)^2\ge0=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2\ge0\)
\(=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\ge2\) (với mọi x,y)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}\left(x-\frac{4y-10}{2}\right)^2=0\\\left(y-1\right)^2=0\end{cases}}< =>\hept{\begin{cases}x-\frac{4y-10}{2}=0\\y=1\end{cases}}< =>\hept{\begin{cases}x-\frac{4-10}{2}=0\\y=1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy MInA=2 khi x=-3;y=1
Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)
=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]
=> D = (x2 + 5x - 6) . (x2 + 5x + 6)
=> D = (x2 + 5x)2 - 36
=> D = [x(x + 5)]2 - 36
Mà : [x(x + 5)]2 \(\ge0\forall x\)
Suy ra : D = [x(x + 5)]2 - 36 \(\ge-36\forall x\)
Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5
\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)
\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)
Dấu ''='' xảy ra khi x = 3/4
Vậy GTNN của A bằng 7/8 tại x = 3/4
3x2 + 2x + 3=3.(x2+\(\frac{2}{3}\)x+1)=3.(x2+2.x.\(\frac{1}{3}\)+\(\frac{1}{9}\)+\(\frac{8}{9}\))
=3.(\(\left(x+\frac{1}{3}\right)^2+\frac{8}{9}\))
=3.\(\left(x+\frac{1}{3}\right)^2\)+\(\frac{24}{9}\)>\(\frac{24}{9}\)
Vậy GTNN của 3x2 + 2x + 3=\(\frac{24}{9}\)\(\Leftrightarrow\)\(\left(x+\frac{1}{3}\right)^2\)=0\(\Leftrightarrow\)x=\(-\frac{1}{3}\)
\(A=x^2+2y^2-2xy+4x-2y+12\)
\(A=\left(x^2-2xy+y^2\right)+y^2+4x-2y+12\)
\(A=\left[\left(x-y\right)^2+2\left(x+y\right)2+4\right]+\left(y^2-6y+9\right)-1\)
\(A=\left(x-y+2\right)^2+\left(y-3\right)^2-1\)
Mà \(\left(x-y+2\right)^2,\left(y-3\right)^2\ge0\)
\(\Rightarrow A\ge-1\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y+2=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
a) \(B=-x^2+18x+19\)
\(B=-\left(x^2-2\cdot x\cdot9+9^2-100\right)\)
\(B=-\left[\left(x-9\right)^2-100\right]\)
\(B=100-\left(x-9\right)^2\le100\forall x\)( tự lí luận )
Dấu "=" xảy ra \(\Leftrightarrow x-9=0\Leftrightarrow x=9\)
Vậy Bmax = 100 khi và chỉ khi x = 9
b) \(A=2x^2+12x+11\)
\(A=2\left(x^2+6x+\frac{11}{2}\right)\)
\(A=2\left(x^2+2\cdot x\cdot3+3^2-\frac{7}{2}\right)\)
\(A=2\left[\left(x+3\right)^2-\frac{7}{2}\right]\)
\(A=2\left(x+3\right)^2-7\ge-7\forall x\)( tự lí luận )
Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy Amin = -7 khi và chỉ khi x = -3
\(a)A=\left(x^3+3x^2+3x+1\right)-x^3+3x-5\left(x^2-2x+1\right)=3x^2+6x-5x^2+10x+1\)
\(=-2x^2+16x+1=-2\left(x^2-8x-1\right)=-2\left(x^2-8x+16-17\right)\)
\(=-2\left(x-4\right)^2+34\le34\). Dấu ''='' xảy ra khi (x-4)2=0 hay x=4.
Vậy MinA=34 khi x=4
\(b)B=\left(5x\right)^2-10x+1+3y^2+10=\left(5x-1\right)^2+3y^2+10\ge10\)
Dấu ''='' xảy ra khi \(\hept{\begin{cases}\left(5x-1\right)^2=0\\3y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=0\end{cases}}\)
Vậy MaxB=10 khi \(x=\frac{1}{5}\), y=0