Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left\{{}\begin{matrix}sin^4x\le sin^2x\\cos^3x\le cos^2x\end{matrix}\right.\) \(\Rightarrow y\le sin^2x+cos^2x=1\)
\(y_{max}=1\) khi \(\left[{}\begin{matrix}x=k2\pi\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(y=\left(1-cos^2x\right)^2+cos^3x=cos^4x+cos^3x-2cos^2x+1\)
\(y=\left(cosx+1\right)\left(cos^3x-2cosx+2\right)-1\ge-1\)
\(y_{min}=-1\) khi \(cosx=-1\)
b.
\(y=sin^4x.cos^2x\ge0\)
\(y_{min}=0\) khi \(sin2x=0\)
\(y=sin^4x\left(1-sin^2x\right)=\frac{1}{2}.sin^2x.sin^2x.\left(2-2sin^2x\right)\le\frac{1}{2}\left(\frac{sin^2x+sin^2x+2-2sin^2x}{3}\right)^3=\frac{4}{27}\)
\(y_{max}=\frac{4}{27}\) khi \(sin^2x=\frac{2}{3}\)
c.
\(y_{max}\) ko tồn tại
\(y=\frac{tanx}{2}+\frac{tanx}{2}+\frac{1}{tan^2x}\ge3\sqrt[3]{\frac{tan^2x}{4tan^2x}}=\frac{3}{\sqrt[3]{4}}\)
Dấu "=" xảy ra khi \(tanx=\sqrt[3]{2}\)
a) \(D=R\backslash\left\{1\right\}\)
b) \(y\left(x\right)\) xác định khi:
\(cos\dfrac{x}{3}\ne0\Leftrightarrow\dfrac{x}{3}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{3\pi}{2}+k3\pi\)
\(D=R\backslash\left\{\dfrac{3\pi}{2}+k3\pi\right\};k\in Z\)
c) \(y\left(x\right)\) xác định khi:
\(sin2x\ne0\Leftrightarrow2x\ne k\pi\)\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\).
\(D=R\backslash\left\{\dfrac{k\pi}{2}\right\};k\in Z\)
d) \(y\left(x\right)\) xác định khi:
\(x^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\).
\(D=R\backslash\left\{1;-1\right\}\)
ĐKXĐ: \(cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)
\(\dfrac{tan^2x+tanx}{tan^2x+1}=\dfrac{\sqrt{2}}{2}sin\left(\dfrac{\pi}{4}+x\right)\)
\(\Leftrightarrow cos^2x\left(tan^2x+tanx\right)=\dfrac{\sqrt{2}}{2}\left(sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx\right)\)
\(\Leftrightarrow sin^2x+sinxcosx=\dfrac{1}{2}\left(sinx+cosx\right)\)
\(\Leftrightarrow sinx\left(sinx+cosx\right)-\dfrac{1}{2}\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-\dfrac{1}{2}\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\sinx+cosx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\\\sqrt{2}.sin\left(x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\\x=\dfrac{-\pi}{4}+k\pi\end{matrix}\right.\)
có thể giải thích rõ ở dấu tương đương 1 và 2 cho em hiểu làm sao để rút gọn nó thành như vậy được không ạ
a) Cách 1: y' = (9 -2x)'(2x3- 9x2 +1) +(9 -2x)(2x3- 9x2 +1)' = -2(2x3- 9x2 +1) +(9 -2x)(6x2 -18x) = -16x3 +108x2 -162x -2.
Cách 2: y = -4x4 +36x3 -81x2 -2x +9, do đó
y' = -16x3 +108x2 -162x -2.
b) y' = .(7x -3) +(7x -3)'= (7x -3) +7.
c) y' = (x -2)'√(x2 +1) + (x -2)(√x2 +1)' = √(x2 +1) + (x -2) = √(x2 +1) + (x -2) = √(x2 +1) + = .
d) y' = 2tanx.(tanx)' - (x2)' = .
e) y' = sin = sin.
Lời giải:
a) y' = = , y" = = = .
b) y' = = ;
y" = = = .
c) y' = ; y" = = = .
d) y' = 2cosx.(cosx)' = 2cosx.(-sinx) = - 2sinx.cosx = -sin2x,
y" = -(2x)'.cos2x = -2cos2x.
Tập xác định : D = R \ \(\left\{\dfrac{\pi}{2}+k\pi|k\in Z\right\}\)
y = \(\dfrac{1}{2}cos4x+2.\dfrac{tanx}{1+tan^2x}\)
y = \(\dfrac{1}{2}cos4x+2tanx.cos^2x\)
y = \(\dfrac{1}{2}cos4x+2tanx.cos^2x\)
y = \(\dfrac{1}{2}\left(1-2sin^22x\right)+2sinx.cosx\)
y = \(\dfrac{1}{2}-sin^22x+sin2x\)
Tự tìm Min và Max nhé