K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

Đặt \(sinx=t\left(t\in\left[-1;1\right]\right)\).

\(\Rightarrow y=f\left(t\right)=-2t^2+3t-1\)

\(\Rightarrow y_{min}=min\left\{f\left(-1\right);f\left(1\right);f\left(\dfrac{3}{4}\right)\right\}=f\left(-1\right)=-6\)

\(y_{max}=max\left\{f\left(-1\right);f\left(1\right);f\left(\dfrac{3}{4}\right)\right\}=f\left(\dfrac{3}{4}\right)=\dfrac{1}{8}\)

27 tháng 9 2020

\(t=\sin x;t\in\left[-1;1\right]\)

Xét hàm f(t) trên [-1;1]

\(f\left(-1\right)=2+3+1=6\)

\(f\left(1\right)=2-3+1=0\)

\(f\left(\frac{3}{4}\right)=2.\frac{9}{16}-3.\frac{3}{4}+1=-\frac{1}{8}\)

\(\Rightarrow\left\{{}\begin{matrix}y_{max}=6;"="\Leftrightarrow\sin x=-1\\y_{min}=-\frac{1}{8};"="\Leftrightarrow\sin x=\frac{3}{4}\end{matrix}\right.\)

7 tháng 3 2017

NV
12 tháng 7 2021

\(y=1-cos2x+2sin2x+6=2sin2x-cos2x+7\)

\(y=\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sin2x-\dfrac{1}{\sqrt{5}}cos2x\right)+7\)

Đặt \(\dfrac{2}{\sqrt{5}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)

\(y=\sqrt{5}sin\left(2x-a\right)+7\)

\(\Rightarrow-\sqrt{5}+7\le y\le\sqrt{5}+7\)

21 tháng 7 2020

Khi cho A td KOH thu được ancol đồng đẳng. => Các ancol là no đơn chức mạch hở.

Gọi CT các este: \(C_mH_{2m+1}COOC_{m'}H_{2m'+1};C_nH_{2n-1}COOC_{n'}H_{2n'-1};C_qH_{2q}\left(COOC_{q'}H_{2q'}\right)_2\)

TN2: Đốt hỗn hợp 3 muối.

Đặt \(n_{K_2CO_3}=x;n_{H_2O}=y\left(mol\right)\)

\(BTNT.K\Rightarrow n_{COOK^-}=2n_{K_2CO_3}=2x\left(mol\right)\\ BTNT.O\Rightarrow2n_{COOK^-}+2n_{O_2}=3n_{K_2CO_3}+2n_{CO_2}+n_{H_2O}\\ \Rightarrow x-y=0,3\\ BTKL\Rightarrow m_{M'}+m_{O_2}=m_{K_2CO_3}+m_{CO_2}+m_{H_2O}\\ \Rightarrow138x+18y=99,9\\ \Rightarrow\left\{{}\begin{matrix}x=0,675\\y=0,375\end{matrix}\right.\)

H2 muối gồm: \(C_mH_{2m+1}COOK\text{ }a\text{ }mol;C_nH_{2n-1}COOK\text{ }b\text{ }mol;C_qH_{2q}\left(COOK\right)_2\text{ }c\text{ }mol\)

\(\Rightarrow n_A=a+b+c=0,85\\ BTNT.C\Rightarrow\left(m+1\right)a+\left(n+1\right)b+\left(q+2\right)c=n_{K_2CO_3}+n_{CO_2}=1,75\\ \Rightarrow ma+nb+qc=0,4\\ BTNT.K\Rightarrow a+b+2c=1,35\\ BTNT.H\Rightarrow\left(2m+1\right)a+\left(2n-1\right)b+2qc=2n_{H_2O}=0,75\\ \Rightarrow a-b=-0,05\\ \Rightarrow\left\{{}\begin{matrix}a=0,15\\b=0,2\\c=0,5\end{matrix}\right.\\ \Rightarrow0,15m+0,2n+0,5q=0,4\)

Do \(m;q\ge0\Rightarrow n\le\frac{0,4}{0,2}=2\)

\(n\ge2\Rightarrow n=2\Rightarrow m=q=0\)

13 tháng 7 2020

\(\text{c) }y=2sin^2x+4\sqrt{3}sinx\cdot cosx+6cos^2x+1\\ =\left(1-cos2x\right)+2\sqrt{3}sin2x+3\left(cos2x+1\right)+1\\ =2cos2x+2\sqrt{3}sin2x+5\)

Đặt \(t=2cos2x+2\sqrt{3}sin2x\)

\(\Rightarrow t^2\le\left[2^2+\left(2\sqrt{3}\right)^2\right]\left(cos^22x+sin^22x\right)=16\\ \Rightarrow-4\le t\le4\\ \Rightarrow1\le y\le9\\ \)

Vậy \(Min\text{ }y=1\Leftrightarrow sin2x=-\frac{1}{2}\)

\(Max\text{ }y=9\Leftrightarrow sin2x=\frac{1}{2}\)

17 tháng 9 2021

a, \(y=3-4sin^2x.cos^2x=3-sin^22x\)

Đặt \(sin2x=t\left(t\in\left[-1;1\right]\right)\).

\(\Rightarrow y=f\left(t\right)=3-t^2\)

\(\Rightarrow y_{min}=minf\left(t\right)=2\)

\(y_{max}=maxf\left(t\right)=3\)

17 tháng 9 2021

b, \(y=f\left(t\right)=\dfrac{-2}{3t-5}\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y_{min}=minf\left(t\right)=\dfrac{2}{5}\)

\(y_{max}=maxf\left(t\right)=1\)