Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có bài ngược của bài này, bạn đăng và đã có lời giải thì chỉ cần đảo lại đáp án là được.
\(E=\sqrt{x}+\dfrac{4}{\sqrt{x}}-2=\dfrac{4\sqrt{x}}{9}+\dfrac{4}{\sqrt{x}}+\dfrac{5}{9}.\sqrt{x}-2\)
\(E\ge2\sqrt{\dfrac{16\sqrt{x}}{9\sqrt{x}}}+\dfrac{5}{9}.\sqrt{9}-2=\dfrac{7}{3}\)
\(E_{min}=\dfrac{7}{3}\) khi \(x=9\)
\(F=3\sqrt{x}+\dfrac{1}{\sqrt{x}}+1=2\sqrt{x}+\dfrac{1}{\sqrt{x}}+\sqrt{x}+1\)
\(F\ge2\sqrt{\dfrac{2\sqrt{x}}{\sqrt{x}}}+1.\sqrt{\dfrac{1}{2}}+1=\dfrac{2+5\sqrt{2}}{2}\)
\(F_{min}=\dfrac{2+5\sqrt{2}}{2}\) khi \(x=\dfrac{1}{2}\)
1)
ĐKXĐ: x>4
Ta có: \(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)
\(\Leftrightarrow x^2+8x+15=x^2-6x+8\)
\(\Leftrightarrow8x+6x=8-15\)
\(\Leftrightarrow14x=-7\)
hay \(x=-\dfrac{1}{2}\)(loại)
2) Ta có: \(\sqrt{4x^2-9}=3\sqrt{2x-3}\)
\(\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
b: Thay x=16 vào A, ta được:
\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)
\(\sqrt{x}+2\sqrt{1-x}\le\sqrt{\left(1+4\right)}=\sqrt{5}\)
Mà ta có điều kiện là \(0\le x\le1\)
=> E \(\ge1\)
Vậy GTLN là \(\sqrt{5}\)đạt được khi x = \(\frac{1}{5}\)
Đạt GTNN là 1 khi x = 1
\(A=\dfrac{2.2\sqrt{x-4}}{12x}\le\dfrac{2^2+x-4}{12x}=\dfrac{1}{12}\)
\(A_{max}=\dfrac{1}{12}\) khi \(x=8\)