Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 - 8x + 1 = (x2 - 8x + 16) - 15 = (x - 4)2 - 15
Ta có: (x - 4)2 \(\ge\)0 \(\forall\)x
=> (x - 4)2 - 15 \(\ge\)-15 \(\forall\) x
Dấu "=" xảy ra khi: x - 4 = 0 <=> x = 4
vậy Min của A = -15 tại x = 4
B = 9x2 - 12x - 2 = 9(x2 - 4/3x + 4/9) - 6 = 9(x - 2/3)2 - 6
Ta có: (x - 2/3)2 \(\ge\)0 \(\forall\)x ---> 9(x - 2/3)2 \(\ge\)0 \(\forall\)x
=> 9(x - 2/3)2 - 6 \(\ge\)-6 \(\forall\)x
Dấu "=" xảy ra khi: x - 2/3 = 0 <=> x = 2/3
vậy Min của B = -6 tại x = 2/3
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
a) \(M=-\left(x^2+6x+9\right)+23=23-\left(x-3\right)^2\le23\Rightarrow MaxM=23\Leftrightarrow x=3\)
b) \(N=\left(9x^2+12x+4\right)+16=\left(3x+2\right)^2+16\ge16\Leftrightarrow MinN=16\Leftrightarrow x=-\frac{2}{3}\)
c) \(P=-\left(x^2-4x+4\right)-\left(4y^2+4y+1\right)+8=8-\left(x-2\right)^2-\left(2y+1\right)^2\le8\Rightarrow MaxP=8\Leftrightarrow x=2;y=-\frac{1}{2}\)
câu b k tìm đc GTLN chỉ tìm được GTNN thôi nha
Bài 1:
\(A=-x^2-2x+9\)
\(A=-\left(x^2+2x-9\right)\)
\(A=-\left(x^2+2x+1-10\right)\)
\(A=-\left(x+1\right)^2+10\)
Vì \(-\left(x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x+1\right)^2+10\le10\)
\(\Rightarrow Amax=10\Leftrightarrow x=-1\)
\(B=-9x^2+6x+25\)
\(B=-\left(9x^2-6x-25\right)\)
\(B=-\left[\left(3x\right)^2-2.3x+1-26\right]\)
\(B=-\left(3x-1\right)^2+26\)
Vì \(-\left(3x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(3x-1\right)^2+26\le26\)
\(\Rightarrow Bmax=26\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(C=-x^2+x+1\)
\(C=-\left(x^2-x-1\right)\)
\(C=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-1\right)\)
\(C=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)
Vì \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(\Rightarrow Cmax=\dfrac{5}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(D=-2x^2+3x+1\)
\(D=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)
\(D=-2\left(x^2-2.x\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{1}{2}\right)\)
\(D=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\)
Vì \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x
\(\Rightarrow-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\)
\(\Rightarrow Dmax=\dfrac{17}{8}\Leftrightarrow x=\dfrac{3}{4}\)
\(E=-25x^2-10x+7\)
\(E=-\left(25x^2+10x-7\right)\)
\(E=-\left[\left(5x\right)^2+2.5x+1-8\right]\)
\(E=-\left(5x+1\right)^2+8\)
Vì \(-\left(5x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(5x+1\right)^2+8\le8\)
\(\Rightarrow Emax=8\Leftrightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
Bài 2:
\(A=9x^2+6x+4\)
\(A=\left(3x\right)^2+2.3x+1+3\)
\(A=\left(3x+1\right)^2+3\)
Vì \(\left(3x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(3x+1\right)^2+3\ge3\)
\(\Rightarrow Amin=3\Leftrightarrow x=-\dfrac{1}{3}\)
\(B=4x^2+4x+12\)
\(B=\left(2x\right)^2+2.2x+1+11\)
\(B=\left(2x+1\right)^2+11\)
Vì \(\left(2x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+1\right)^2+11\ge11\)
\(\Rightarrow Bmin=11\Leftrightarrow x=-\dfrac{1}{2}\)
\(C=x^2+x+3\)
\(C=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
\(\Rightarrow Cmin=\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(D=2x^2+3x+1\)
\(D=2\left(x^2+\dfrac{3}{2}x+\dfrac{1}{2}\right)\)
\(D=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}+\dfrac{1}{2}\right)\)
\(D=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)
Vì \(2\left(x+\dfrac{3}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)
\(\Rightarrow Dmin=-\dfrac{1}{8}\Leftrightarrow x=-\dfrac{3}{4}\)
\(E=64x^2+16x+3\)
\(E=\left(8x\right)^2+2.8x+1+2\)
\(E=\left(8x+1\right)^2+2\)
Vì \(\left(8x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(8x+1\right)^2+2\ge2\)
\(\Rightarrow Emin=2\Leftrightarrow x=-\dfrac{1}{8}\)
a) Ta có: \(x^2\ge0\)
\(\Leftrightarrow-3x^2\le0\)
\(\Leftrightarrow-3x^2+2\le2\)
Vậy GTLN của bt là 2\(\Leftrightarrow x=0\)
b) \(-x^2+2x+5=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left[\left(x-1\right)^2-6\right]\)
\(=-\left(x-1\right)^2+6\le6\)
Vậy GTLN của bt là 6\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
c) \(-4x^2-12x+15=-4\left(x^2+3x-\frac{15}{4}\right)\)
A = -3x^2 - 6x = -3( x^2 + 2x ) = - 3 ( x^2 + 2x + 1 - 1 ) = - 3 [ ( x+ 1 )^2 - 1 )
= - 3( x + 1 )^2 + 3
Vì -3(x + 1 )^2 <=0 => -3( x+ 1 )^2 + 3 <= 3
VẬy GTLN của A là 3 khi x+ 1 = 0 => x = -1
B = 2x - x^2
= - ( x^2 -2x )
= - ( x^2 -2x+ 1 - 1 )
= - [ ( x- 1 )^2 - 1 )
= - ( x- 1 )^2 + 1
Vì - ( x- 1 )^2 <= 0 => - ( x - 1 )^2 + 1 <= 1
VẬy GTLN của B = 1 khi x = 1
C = 12x - 9x^2 + 15
= - ( 9x^2 -12x + 15)
= - (9x^2 - 2.3x.2 + 4 + 9 )
= - ( 3x- 2 )^2 - 9
Đánh giá tương Tự
VẬy GTLN B = -9 khi x =2/3
Đúng cho mình nha