Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho ba số thực dương x;y;z thoả mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
\(\sqrt{\left(x-1\right)^2+4}\ge2\)
\(\sqrt{x^2-2x+5}\ge2\)
a) \(A=\sqrt[]{x^2-2x+5}\)
\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)
\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)
mà \(\left(x+1\right)^2\ge0,\forall x\in R\)
\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)
Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)
Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)
b) \(B=5-\sqrt[]{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)
Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)
\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)
\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)
Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Ta có: `(2x -3)(5-x) `
`= 10x - 2x^2 - 15 + 3x`
`= -2x^2 + 13x - 15`
`= -2(x^2 -13/2 x +15/2)`
`= -2[(x^2 - 2x . 13/4+ 169/16) -49/16]`
`= -2[(x-13/4)^2 - 49/16]`
`= -2(x-13/4)^2 +49/8`
Vì `(x-13/4)^2 ge 0` với mọi `x`
`<=> -2x(x-13/4)^2 le 0` với mọi `x`
`<=> -2x(x-13/4)^2 + 49/8 le 49/8` với mọi `x`
Dấu "=" xảy ra khi: `x-13/4 =0 <=> x= 13/4`
Vậy giá trị lớn nhất của biểu thức là `49/8` khi `x= 13/4`
(2x-3)(5-x)=\(10x-2x^2-15+3x=-2x^2+13x-15=-2x^2+13x-\dfrac{169}{8}+\dfrac{169}{8}=-\left(2x^2-13x+\dfrac{169}{9}\right)+\dfrac{169}{8}=-\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)^2+\dfrac{169}{8}\)
Ta có \(\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)^2\ge0=>-\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)\le0=>\left(x\sqrt{2}-\dfrac{13}{2\sqrt{2}}\right)+\dfrac{169}{8}\le\dfrac{169}{8}\)
x >= -5/2 => 2x+5 >= 0
x < = 5 => 5-x >= 0
=> y = (2x+5).(5-x) >= 0
Dấu "=" xảy ra <=> 2x+5=0 hoặc 5-x=0 <=> x=-5/2 hoặc x=5
Vậy ..............
Tk mk nha