K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

\(4x^2-2\left|2x-1\right|-4x-5=\left(2x-1\right)^2-2\left|2x-1\right|+1-5\)

\(=\left(\left|2x-1\right|-1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi \(\left|2x-1\right|=1\Leftrightarrow x=1\text{ hoặc }x=0\)

=> GTNN của y là -5

\(y=\left(\left|2x-1\right|-1\right)^2-5\)

\(-2\le x\le1\Rightarrow-5\le2x-1\le1\Rightarrow0\le\left|2x-1\right|\le5\)

\(\Rightarrow-1\le\left|2x-1\right|-1\le4\Rightarrow0\le\left(\left|2x-1\right|-1\right)^2\le16\)

\(\Rightarrow y\le16-5=11\)

Dấu "=" xảy ra khi x = -2

Vậy GTLN của y là 11.

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

NV
4 tháng 2 2021

\(y=\dfrac{x+3}{4}+\dfrac{9}{x-1}=\dfrac{x-1}{4}+\dfrac{9}{x-1}+1\)

\(y\ge2\sqrt{\dfrac{9\left(x-1\right)}{4\left(x-1\right)}}+1=4\)

\(y_{min}=4\) khi \(x=7\)

18 tháng 9 2023

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)