Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
đặt : y = 60 + a => x = 40 - a
Ta có
√ [ 2/ 3( 60 + a )( 40 -a ) ] = √ ( 40 + 2a/ 3)( 40 - a )
√ ( 40 + 2a/ 3)( 40 - a ) =< ( 40 + 2a / 3 + 40 -a ) /2 ( BĐT cô si cho 2 so duong)
<=> √ ( 40 + 2a/ 3)( 40 - a ) =< ( 80 - a/ 3 )/2 =< 80 / 2 = 40
dấu = xảy ra <=> 40 + 2a / 3 = 40 -a và a / 3 = 0
<=> a = 0
<=> x = 40 ; y = 60
b)đặt : z = 60 + a
=> x = 40 -a - y
y = 40 -a - x
tương tự , áp dụng cô si cho 3 số
1/3( 60 + a ) ; ( 40 -a -y ) và ( 40 - a - x )
bài 2
Ta có : góc B = 60 độ
=> C = 30 độ
=> AB = BC / 2 ( đây là kiến thức 8 )
=> AC = √ ( BC^2 - BC^2 / 4 ) = ( BC√ 3 ) /2
=> AC / AB = ( BC√ 3 ) /2 : BC / 2 = √ 3
Từ giả thiết, x+y=100-z\(\leq\)40
Theo BĐT Cô-si: \(3x.3y.z\le\left(\dfrac{3x+3y+z}{3}\right)^3=\left(\dfrac{2x+2y+100}{3}\right)^3\le\left(\dfrac{2.40+100}{3}\right)^3=216000\Rightarrow xyz\le24000\)
Dấu "=" xảy ra khi x=y=20 và z=60
Không mất tính tổng quát, giả sử x > y (do tổng x + y = 2009 là một số lẻ)\(\Rightarrow\)x \(\ge\)y+1 \(\Rightarrow\)x - y - 1 \(\ge\)0.
Từ đó, ta có: (x +1)(y -1) = xy - (x - y -1) \(\le\)xy.
Đến đây ta hiểu rằng, khi x và y càng xa nhau thì tích xy càng bé.
như vậy, GTLN của xy = 1005.1004; GTNN của xy = 2008.1
Dễ dàng nhận thấy dấu "=" xảy ra <=> z =60, x = y = 20
=> z = 3x = 3y
Có x+y+z = 100 => x+y = 100 - z
Xét z + 3x + 3y \(\ge3\sqrt[3]{z.3x.3y}\)
=> 100 + 2(x+y) \(\ge3\sqrt[3]{9xyz}\)
=> 100 + 2(100-z) \(\ge3\sqrt[3]{9xyz}\)
Ta có: z \(\ge60\) => \(-z\le-60\) => 100 + 2(100-z) \(\le100+2\left(100-60\right)\)
=> \(280\text{ }\) \(\ge3\sqrt[3]{9xyz}\)
=> xyz \(\le24000\)
Dấu "=" xảy ra <=> z =60, x = y = 20
Bài 1:a,
A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc
Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2
b,làm tt câu a
\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).
Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)
Ta có:x+y+xy=8
x+xy+y=8
x+xy+y+1=8+1=9
x.(1+y)+(1+y)=9
(1+y).(x+1)=9=3.3=1.9
Đến đây bn làm đc rùi đó,tk mk^-^
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
16 minh chac minh lam 300 dim lun
áp dụng BDT cô si ta có
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{100^2}{4}\)
vậy Max của \(xy=\frac{100^2}{4}=2500\)
dấu = xảy ra khi x=y=50