Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x-x^2=-(x^2-2x\(\frac{1}{2}\)+\(\frac{1}{4}\))+\(\frac{1}{4}\)=-(x-\(\frac{1}{2}\))+\(\frac{1}{4}\)
\(\Rightarrow\)MaxA=\(\frac{1}{4}\)\(\Leftrightarrow\)x=\(\frac{1}{2}\)
a) Vì x2 >hoặc = 0
=> x+x2 >=x
=> Min x+x2 =x khi và chỉ khi x2 = 0 hay x=0
=>Min A =0 khi x=0
b)Vì x2 >= 0
=>2x2 >=0
=>2x2 +2x >=2x
=> 2x2 +2x + 3 >= 2x+3
=>1/(2x2 +2x + 3) <= 1/( 2x+3)
=>3/(2x2 +2x + 3) <= 3/( 2x+3)
=> B <= 3/( 2x+3)
=> Max B = 3/(2x+3) khi x2=0hay x=0
=> Max B=3/2*0+3=1 khi x=0
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(A=\frac{3x+1}{2x^2-x+3}\)
\(A=\frac{2x^2-x+3-2x^2+4x-2}{2x^2-x+3}\)
\(A=\frac{\left(2x^2-x+3\right)-2\left(x^2-2x+1\right)}{2x^3-x+3}\)
\(A=1-\frac{2\left(x-1\right)^2}{2x^2-x+3}\)
\(A=1-\frac{2\left(x-1\right)^2}{2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{23}{8}}\)
\(A=1-\frac{2\left(x-1\right)^2}{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\le1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(x-\frac{1}{4}\right)^2\ge0\forall x\end{cases}\Rightarrow\frac{2\left(x-1\right)^2}{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge0\forall x}\)
Dấu '' = '' xảy ra khi x = 1
Vậy Max A =1 khi x = 1 .
\(A=\frac{x^2+2x+3}{x^2+2}\)
\(\Leftrightarrow Ax^2+2A=x^2+2x+3\)
\(\Leftrightarrow Ax^2+2A-x^2-2x-3=0\)
\(\Leftrightarrow x^2\left(A-1\right)-2x+\left(2A-3\right)=0\)
Để pt trên có nghiệm thì \(\Delta=4-4\left(A-1\right)\left(2A-3\right)\ge0\)
\(\Leftrightarrow1-\left(2A^2-5A+3\right)\ge0\Leftrightarrow-2A^2+5A-2\ge0\)
\(\Leftrightarrow\left(1-2A\right)\left(A-2\right)\ge0\Leftrightarrow\frac{1}{2}\le A\le2\)
Vậy A có GTNN là \(\frac{1}{2}\) tại x = - 2
A có GTLN là 2 tại x = 1
super easy . tập làm đi cho não có nếp nhăn Giang ơi :)
Mik làm bài 3 nha
Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì
\(x^2-6x+17\)đạt GTNN
Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ
Suy ra \(x^2-6x+17\ge17\)
Suy ra \(x^2-6x+17\)đạt GTNN khi
\(x^2-6x+17=17\)
\(\Leftrightarrow x^2-6x=0\)
Dấu ''='' xảy ra khi:
\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Câu cuôi tương tự