Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(-x^2+2xy-4y^2+2x+8y-8=-\left(x^2-2xy+y^2-2x+1+2y\right)-\left(3y^2-6y+3\right)-4=-4-\left(x-y-1\right)^2-3\left(y-1\right)^2\le-4\)
=>Max A=-4<=>(x-y-1)2=0 và (y-1)2=0<=>x=2 y=1
a) \(M=10x^2+6y+4y^2+4xy+2\)
\(=\left(10x^2+4xy+\dfrac{2}{5}y^2\right)+\left(\dfrac{18}{5}y^2+6y+\dfrac{5}{2}\right)-\dfrac{1}{2}\)
\(=10\left(x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)+\dfrac{18}{5}\left(y^2+\dfrac{5}{3}y+\dfrac{25}{36}\right)-\dfrac{1}{2}\)
\(=10\left(x+\dfrac{1}{5}y\right)^2+\dfrac{18}{5}\left(y+\dfrac{5}{6}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{5}y=0\\y+\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
b) \(H=-x^2+2xy-4y^2+2x+10y-8\)
\(=-x^2+2x\left(y+1\right)-\left(y^2+2y+1\right)-\left(3y^2-12y+7\right)\)
\(=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3\left(y^2-4y+4\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
c) \(K=2x^2+2xy-2x+2xy+y^2\)
bn xem lại cái đề nhé, sao lại có 2 lần 2xy
8-2x2-y2+2xy-4y= -y2+2y(x-2)-(x-2)2-x2-4x+12
=-(y2-2y(x-2)+(x-2)2)-(x2+4x+4)+16
=-(y-x+2)2-(x+2)2+16 \(\le\) 16, với mọi x,y.
Dấu "=" xảy ra khi : \(\left\{{}\begin{matrix}y-x+2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-4\\x=-2\end{matrix}\right.\)
Vậy GTLN của biểu thức trên là 16 khi x=-2; y=-4.
\(A=8-2x^2-y^2+2xy-4y\\ =-\left(-8+2x^2+y^2-2xy+4y\right)\\ =-\left(y^2-2y\left(x-2\right)+\left(x-2\right)^2+\left(x^2+4x+4\right)\right)=-\left(\left(y-x+2\right)^2+\left(x+2\right)^2\right)\\ =-\left(y-x+2\right)^2-\left(x+2\right)^2\)
Max A = 0 khi x=-2 ;y=0
3 Người 3 đáp án :V
\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)
Vậy GTLN của A là -1 khi x = 3
\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)
Vậy GTLN của B là -8 khi x = -1
\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)
Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)
\(D=-x^2-y^2+2x-4y-10\)
\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)
\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)
Vậy GTLN của D là -5 khi x = 1; y = -2
\(C=-3x\left(3+x\right)-7=-9x-3x^2-7=-\left(3x^2+9x+7\right)=-3\left(x^2+3x+\frac{7}{3}\right)\)
=\(-3\left(x^2+2.\frac{3}{2}.x+\frac{9}{4}+\frac{1}{12}\right)=-3\left[\left(x+\frac{3}{2}\right)^2+\frac{1}{12}\right]=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le-\frac{1}{4}\)
Dấu "=" xảy ra khi x=-3/2
---
\(D=2xy-x^2-4y^2-8+2x+10y\)
\(=-\left(x^2+2xy-2x+4y^2-10y+8\right)\)
\(=-\left[x^2+2x\left(y-1\right)+4y^2-10y+8\right]\)
\(=-\left[x^2+2x\left(y-1\right)+\left(y^2-2y+1\right)+3y^2-8y+7\right]\)
\(=-\left[x^2+2x\left(y-1\right)+\left(y-1\right)^2+3\left(y^2-2.\frac{4}{3}.y+\frac{16}{9}\right)+\frac{5}{3}\right]\)
\(=-\left[\left(x+y-1\right)^2+3\left(y-\frac{4}{3}\right)^2+\frac{5}{3}\right]\)
\(=-\left(x+y-1\right)^2-3\left(y-\frac{4}{3}\right)^2-\frac{5}{3}\le-\frac{5}{3}\)
Dấu "=" xảy ra khi x=-1/3 và y=4/3
\(A=2012-\left(2x^2+5y^2-2xy-4x-4y\right)\\ \)
Hệ số lẻ quá:
B=2A đặt 2x=z
\(B=m-\left(z^2+10y^2-2yz-4z-8y\right)\)
\(B=m-\left[\left(z-y-2\right)^2+9y^2-12y-4\right]\)
\(B=m-\left[\left(z-y-2\right)^2+\left(t-2\right)^2-4-4\right]\)
\(B=\left(m-8\right)-\left(z-y-2\right)^2-\left(t-2\right)^2\)
\(A_{min}=\frac{2.2012-8}{2}=2008\)đạt tại \(\orbr{\begin{cases}t-2=0=>y=\frac{2}{3}\\z-y-2=0\Rightarrow x=\frac{4}{3}\end{cases}}\)
bn tham khảo