Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Chỉ tìm được Max thôi nhé
a) \(C=\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|3x+5\right|=0\\\left|4y+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{3}\\y=-\frac{5}{4}\end{cases}}\)
b) \(E=\frac{2}{3}+\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\le\frac{2}{3}+\frac{21}{14}=\frac{13}{6}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+3y\right)^2=0\\5\left|x+5\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=\frac{5}{3}\end{cases}}\)
2) Thì chỉ tìm được GTNN thôi nhé
a) \(A=5+\frac{-8}{4\left|5x+7\right|+24}\ge5-\frac{8}{24}=\frac{14}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(4\left|5x+7\right|=0\Rightarrow x=-\frac{7}{5}\)
Vậy Min(A) = 14/3 khi x = -7/5
b) \(B=\frac{6}{5}-\frac{14}{5\left|6y-8\right|+35}\ge\frac{6}{5}-\frac{14}{35}=\frac{4}{5}\left(\forall y\right)\)
Dấu "=" xảy ra khi: \(5\left|6y-8\right|=0\Rightarrow x=\frac{4}{3}\)
Vậy Min(B) = 4/5 khi x = 4/3
Tìm giá trị nhỏ nhất của biểu thức:
a. K =(x+ \(\frac{1}{3}\))2 - \(\frac{2}{5}\)
b. H= 8 + 5 . |3x+1|
vi (x+ 1/3 )2 ≥0
=>(x+ 1/3)2+ 2/5 ≥ 2/5
vậy dấu ''='' sảy ra khi x+1/3=0 =>x=-1/3
vậy giá trị nhỏ nhất là 2/5 khi x=-1/3
bạn ghi sai rồi -2/5 chuyển thành +2/5
\(\frac{3x+5}{2}+\frac{3x+5}{4}+\frac{3x+5}{6}=\frac{3x+5}{8}\)
\(\frac{3x+5}{2}+\frac{3x+5}{4}+\frac{3x+5}{6}-\frac{3x+5}{8}=0\)
\(\left(3x-5\right)\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}-\frac{1}{8}\right)=0\)
\(\Rightarrow x=-\frac{5}{3}\)
a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất
Có: \(4.\left|3x+7\right|+3\ge3\forall x\)
Dấu "=" xảy ra khi |3x + 7| = 0
=> 3x + 7 = 0
=> 3x = -7
\(\Rightarrow x=\frac{-7}{3}\)
Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10
Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)
b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất
Có: \(8.\left|15x-21\right|+7\ge7\forall x\)
Dấu "=" xảy ra khi |15x - 21| = 0
=> 15x - 21 = 0
=> 15x = 21
\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)
Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)
Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)
c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)
\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)
hay \(C\ge9\)
Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)
Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
1) Ta có: \(5\cdot\left|3-12x\right|+\frac{1}{8}\ge\frac{1}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(5\cdot\left|3-12x\right|+\frac{1}{8}=\frac{1}{8}\)
\(\Leftrightarrow5\cdot\left|3-12x\right|=0\)
\(\Leftrightarrow\left|3-12x\right|=0\)
\(\Leftrightarrow12x=3\)
\(\Rightarrow x=\frac{1}{4}\)
Vậy Min = 1/8 khi x = 1/4
2) Ta có: \(\left|3x-y\right|+2\cdot\left(y-1\right)^2-\frac{1}{5}\ge-\frac{1}{5}\left(\forall x,y\right)\)
Dấu "='' xảy ra khi: \(\hept{\begin{cases}\left|3x-y\right|=0\\2\cdot\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=y\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}\)
Vậy \(Min=-\frac{1}{5}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}\)
a) \(\frac{3x-5}{x+4}=\frac{5}{2}\)
<=> 2(3x-5) = 5(x+4)
<=> 6x-10 = 5x+20
<=> x = 30
b) \(\frac{3x-1}{2x+1}=\frac{3}{7}\)
<=> 7(3x-1) = 3(2x+1)
<=> 21x-7 = 6x+3
<=>15x = 10
<=> x = \(\frac{2}{3}\)