Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
=>\(3x-\frac{1}{2}=0;\frac{1}{2}y+\frac{3}{5}=0\left(\left|3x-\frac{1}{2}\right|;\left|\frac{1}{2}y+\frac{3}{5}\right|\ge0\right)\)
=>\(x=\frac{1}{6};y=\frac{-6}{5}\)
b)\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)
Ta lại có:
\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\)
=>\(\frac{3}{2}x+\frac{1}{9}=0;\frac{1}{5}y-\frac{1}{2}=0\Rightarrow x=-\frac{2}{27};y=\frac{5}{2}\)
Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)
\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)
Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)
Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)
Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)
Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{2x-3+x-2}{\left(7-6x\right)^2}=\frac{6x-3-12x+10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{3x-5}{\left(7-6x\right)^2}=\frac{7-6x}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\left(7-6x\right)^3=\left(3x-5\right)^3\)
\(\Leftrightarrow7-6x=3x-5\)
\(\Leftrightarrow7+5=3x+6x\)
\(\Leftrightarrow12=9x\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
1) Ta có: \(5\cdot\left|3-12x\right|+\frac{1}{8}\ge\frac{1}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(5\cdot\left|3-12x\right|+\frac{1}{8}=\frac{1}{8}\)
\(\Leftrightarrow5\cdot\left|3-12x\right|=0\)
\(\Leftrightarrow\left|3-12x\right|=0\)
\(\Leftrightarrow12x=3\)
\(\Rightarrow x=\frac{1}{4}\)
Vậy Min = 1/8 khi x = 1/4
2) Ta có: \(\left|3x-y\right|+2\cdot\left(y-1\right)^2-\frac{1}{5}\ge-\frac{1}{5}\left(\forall x,y\right)\)
Dấu "='' xảy ra khi: \(\hept{\begin{cases}\left|3x-y\right|=0\\2\cdot\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=y\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}\)
Vậy \(Min=-\frac{1}{5}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}\)