\(G=-x^2+9x-10\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

G= -(x2-9x+10)
   = \(-\left(x^2-2.\frac{9}{2}.x+\frac{81}{4}-\frac{41}{4}\right)\)
   = \(-\left(x-\frac{9}{2}\right)^2-\frac{41}{4}\)
   = \(\left(x-\frac{9}{2}\right)^2+\frac{41}{4}\ge\frac{41}{4}\)
Vậy: \(G_{max}=\frac{41}{4}\)

25 tháng 2 2020

G = (x - 3)^2 + |x^2 - 9| + 25

có (x - 3)^2 > 0 và |x^2 - 9| >

=> G > 25

xét G = 25 khi : 

(x - 3)^2 = 0 và |x^2 - 9| = 0

=> x - 3 = 0 và x^2 - 9 = 0

=> x = 3 và x^2 = 9

=> x = 3 và x = +

=> x = 3

vậy Min G = 25 khi x = 3

25 tháng 2 2020

\(G=\left(x-3\right)^2+|x^2-9|+25\)

Ta có:\(\left(x-3\right)^2\ge0;|x^2-9|\ge0\)

\(\Rightarrow G\ge25\)

Nếu G=25 thì \(\hept{\begin{cases}\left(x-3\right)^2=0\\|x^2-9|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\x^2-9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\x=\pm3\end{cases}}\Rightarrow x=3}\)

Vậy GTNN của G=25 đạt được khi x=3

2 tháng 1 2016

\(G=-x^2+9x-10=-\left(x^2-9x+10\right)=-\left(x^2-2.x.\frac{9}{2}+\frac{81}{4}-\frac{41}{4}\right)=-\left[\left(x-\frac{9}{2}\right)^2-\frac{41}{4}\right]\)

\(=-\left(x-\frac{9}{2}\right)^2+\frac{41}{4}\le\frac{41}{4}\)

=> MaxG=41/4

<=> x-9/2=0

<=> x=9/2

16 tháng 7 2018

\(A=\left|x-1\right|+\left|x-2\right|\)

\(\Rightarrow A\ge\left|x-1+2-x\right|=1\)

Dấu "=" xảy ra khi 

\(\orbr{\begin{cases}x\ge1\\x\le2\end{cases}}\Rightarrow x\in\left(1;2\right)\)

Vậy Min A = 1 <=> x thuộc tập hợp 1 ; 2

20 tháng 3 2019

a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)

\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}\Rightarrow y=2\)

\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}=\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)

\(\Rightarrow2x-27=1\)

\(\Rightarrow2x=28\Rightarrow x=14\)

vậy x = 14

20 tháng 3 2019

a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)

\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{9.2}\)

\(\Rightarrow9y=9.2\Rightarrow y=2\)

thay y = 2 vào ta có :

\(\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)

\(\Rightarrow2x-27=1\Rightarrow2x=28\Rightarrow x=14\)

b, \(\frac{1}{x}=\frac{y}{2}-\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}=\frac{3y}{6}-\frac{2}{6}\)

\(\Rightarrow\frac{1}{x}=\frac{3y-2}{6}\)

\(\Rightarrow x=6\)

2. \(B=\frac{10n-3}{4n-10}=\frac{\frac{5}{2}.\left(4n-10\right)+22}{4n-10}=\frac{5}{2}+\frac{22}{4n-10}\)

để \(B\) có giá trị lớn nhất thì \(\frac{22}{4n-10}\) là số dương lớn nhất 

=> 4n - 10 là số dương nhỏ nhất ( n thuộc N )

\(\Rightarrow4n-10=2\Rightarrow4n=12\Rightarrow n=3\)

ta có : 

\(B=\frac{10n-3}{4n-10}=\frac{30-3}{12-10}=\frac{27}{2}\)

Vậy để \(B\) có giá trị lớn nhất thì \(n=3\)

giá trị lớn nhất của \(B=\frac{27}{2}\)

15 tháng 2 2020

\(A=\left|-x+8\right|-21\)

\(A=\left|-x+8\right|-21\ge-21\)

\(MinA=-21\Leftrightarrow-x+8=0\)\(\Leftrightarrow x=8\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\)

\(B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)

\(MinB=12\Leftrightarrow\hept{\begin{cases}-x-17=0\\y-36=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=36\end{cases}}\)

\(C=-\left|2x+8\right|-35\)

\(C=-\left|2x+8\right|-35\le-35\)

\(MaxC=-35\Leftrightarrow2x+8=0\Leftrightarrow x=-4\)

15 tháng 2 2020

Trl

-Bạn kia làm đúng rồi !~

Học tốt 

nhé bạn :>

1 tháng 2 2019

a) GTNN

b) GTLN

c, GTNN

d,GTNN

1 tháng 2 2019

Ta có:

/x+1/>=0 với mọi x E R

=>A=/x+1/-2019 >= -2019

=> Amin=-2019

Vậy: Amin=-2019 dấu "=" xảy ra khi: x=-1

21 tháng 6 2018

2 câu là tìm GTNN đúng hông bạn :) 

\(a)\) Ta có : 

\(\left(x-1\right)^2\ge0\)

\(\Rightarrow\)\(A=2000\left(x-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)

\(\Leftrightarrow\)\(x-1=0\)

\(\Leftrightarrow\)\(x=1\)

Vậy GTNN của \(A\) là \(0\) khi \(x=1\)

\(b)\) Ta có : 

\(\left|x-3\right|\ge0\)

\(\Rightarrow\)\(B=\left|x-3\right|+5\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-3\right|=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTNN của \(B\) là \(5\) khi \(x=3\)

Chúc bạn học tốt ~ 

21 tháng 6 2018

Phùng Minh Quân

Câu thứ nhất là tìm GTLN  ạ