Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G = (x - 3)^2 + |x^2 - 9| + 25
có (x - 3)^2 > 0 và |x^2 - 9| > 0
=> G > 25
xét G = 25 khi :
(x - 3)^2 = 0 và |x^2 - 9| = 0
=> x - 3 = 0 và x^2 - 9 = 0
=> x = 3 và x^2 = 9
=> x = 3 và x = + 3
=> x = 3
vậy Min G = 25 khi x = 3
\(G=\left(x-3\right)^2+|x^2-9|+25\)
Ta có:\(\left(x-3\right)^2\ge0;|x^2-9|\ge0\)
\(\Rightarrow G\ge25\)
Nếu G=25 thì \(\hept{\begin{cases}\left(x-3\right)^2=0\\|x^2-9|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\x^2-9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\x=\pm3\end{cases}}\Rightarrow x=3}\)
Vậy GTNN của G=25 đạt được khi x=3
\(A=\left|x-1\right|+\left|x-2\right|\)
\(\Rightarrow A\ge\left|x-1+2-x\right|=1\)
Dấu "=" xảy ra khi
\(\orbr{\begin{cases}x\ge1\\x\le2\end{cases}}\Rightarrow x\in\left(1;2\right)\)
Vậy Min A = 1 <=> x thuộc tập hợp 1 ; 2
a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}\Rightarrow y=2\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}=\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)
\(\Rightarrow2x-27=1\)
\(\Rightarrow2x=28\Rightarrow x=14\)
vậy x = 14
a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{9.2}\)
\(\Rightarrow9y=9.2\Rightarrow y=2\)
thay y = 2 vào ta có :
\(\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)
\(\Rightarrow2x-27=1\Rightarrow2x=28\Rightarrow x=14\)
b, \(\frac{1}{x}=\frac{y}{2}-\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{3y}{6}-\frac{2}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{3y-2}{6}\)
\(\Rightarrow x=6\)
2. \(B=\frac{10n-3}{4n-10}=\frac{\frac{5}{2}.\left(4n-10\right)+22}{4n-10}=\frac{5}{2}+\frac{22}{4n-10}\)
để \(B\) có giá trị lớn nhất thì \(\frac{22}{4n-10}\) là số dương lớn nhất
=> 4n - 10 là số dương nhỏ nhất ( n thuộc N )
\(\Rightarrow4n-10=2\Rightarrow4n=12\Rightarrow n=3\)
ta có :
\(B=\frac{10n-3}{4n-10}=\frac{30-3}{12-10}=\frac{27}{2}\)
Vậy để \(B\) có giá trị lớn nhất thì \(n=3\)
giá trị lớn nhất của \(B=\frac{27}{2}\)
\(A=\left|-x+8\right|-21\)
\(A=\left|-x+8\right|-21\ge-21\)
\(MinA=-21\Leftrightarrow-x+8=0\)\(\Leftrightarrow x=8\)
\(B=\left|-x-17\right|+\left|y-36\right|+12\)
\(B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)
\(MinB=12\Leftrightarrow\hept{\begin{cases}-x-17=0\\y-36=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=36\end{cases}}\)
\(C=-\left|2x+8\right|-35\)
\(C=-\left|2x+8\right|-35\le-35\)
\(MaxC=-35\Leftrightarrow2x+8=0\Leftrightarrow x=-4\)
2 câu là tìm GTNN đúng hông bạn :)
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(A=2000\left(x-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(x-1=0\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(A\) là \(0\) khi \(x=1\)
\(b)\) Ta có :
\(\left|x-3\right|\ge0\)
\(\Rightarrow\)\(B=\left|x-3\right|+5\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-3\right|=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(B\) là \(5\) khi \(x=3\)
Chúc bạn học tốt ~
G= -(x2-9x+10)
= \(-\left(x^2-2.\frac{9}{2}.x+\frac{81}{4}-\frac{41}{4}\right)\)
= \(-\left(x-\frac{9}{2}\right)^2-\frac{41}{4}\)
= \(\left(x-\frac{9}{2}\right)^2+\frac{41}{4}\ge\frac{41}{4}\)
Vậy: \(G_{max}=\frac{41}{4}\)