Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-9x^2-12x-4+18=-\left(9x^2+12x+4\right)+18\)
\(A=-\left(3x+2\right)^2+18\le18\)
\(\Rightarrow A_{max}=18\) khi \(3x+2=0\Rightarrow x=-\frac{2}{3}\)
a) Ta có : 2x2 + 3x = 0
<=> x(2x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)
Bài làm:
Ta có: \(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
\(A=3x^2y^3+3x^3y^2-5x^2\)
=> Bậc của đa thức A là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
=> Bậc của đa thức B là 6
\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
\(A=3x^2y^3-5x^2+3x^3y^2\)
Xét bậc của từng hạng tử :
3x2y3 có bậc 5
-5x2 có bậc 2
3x3y2 có bậc 5
=> Bậc của A là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
Xét bậc từng hạng tử
5/2 . x5y có bậc 6
7/3 xy4 có bậc 5
-1/4 x2y3 có bậc 5
=> Bậc của B là 6
câu 2:
a) ta có:
\(x^2-5x+4=0\\ \Rightarrow x^2-x-4x+4=0\\ \Rightarrow x^2-x-\left(4x-4\right)=0\\ \Rightarrow\left(x^2-x\right)-\left(4x-4\right)=0\\ \Rightarrow x\left(x-1\right)-4\left(x-1\right)=0\\ \Rightarrow\left(x-4\right)\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
vậy x = {1;4} là nghiệm của đa thức x2 - 5x + 4
b) ta có:
\(2x^2+3x+1=0\\ \Rightarrow2x^2+2x+x+1=0\\ \Rightarrow\left(2x^2+2x\right)+\left(x+1\right)=0\\ \Rightarrow2x\left(x+1\right)+\left(x+1\right)=0\\ \Rightarrow\left(2x+1\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x+1=0\\x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=-1\end{matrix}\right.\)
vậy \(x=\left\{\dfrac{-1}{2};-1\right\}\) là nghiệm của đa thức 2x2 + 3x +1
a, \(f\left(x\right)=\left(2-x\right)\left(x-1\right)\)
\(=2x-2-x^2+x\)
\(=-x^2+3x-2\)
\(=-\left(x^2-\dfrac{3}{2}x.2+\dfrac{9}{4}-\dfrac{1}{4}\right)\)
\(=-\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu " = " xảy ra khi \(-\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Vậy \(MAX_{f\left(x\right)}=\dfrac{1}{4}\) khi \(x=\dfrac{3}{2}\)
b, tương tự
c, \(h\left(x\right)=2x-3-x^2\)
\(=-\left(x^2-2x+3\right)\)
\(=-\left(x^2-2x+1+2\right)\)
\(=-\left[\left(x-1\right)^2+2\right]\)
\(=-\left(x-1\right)^2-2\le-2\)
Dấu " = " khi \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy \(MAX_{h\left(x\right)}=-2\) khi x = 1
\(f\left(x\right)=\left(2-x\right)\left(x-1\right)\)
\(=-x^2+3x-2\)
\(=-\left(x^2-3x+2\right)\)
\(=-\left(x^2-\dfrac{3}{2}x-\dfrac{3}{2}x+2\right)\)
\(=-\left(x^2-\dfrac{3}{2}x-\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{1}{4}\right)\)
\(=-\left[x\left(x-\dfrac{3}{2}\right)-\dfrac{3}{2}\left(x-\dfrac{3}{2}\right)-\dfrac{1}{4}\right]\)
\(=-\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\right]\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}\)
Vì \(-\left(x-\dfrac{3}{2}\right)^2\le0\Rightarrow-\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow f\left(x\right)\le\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(-\left(x-\dfrac{3}{2}\right)^2=0\)
\(\Rightarrow x=\dfrac{3}{2}.\)
Vậy \(Max_{f\left(x\right)}=\dfrac{1}{4}\) khi \(x=\dfrac{3}{2}.\)
Mấy câu kia tương tự.
a.\(x^2+11x-12\)
<=>\(x^2-x+12x-12\)
<=> \(x\left(x-1\right)+12\left(x-1\right)\)
<=> \(\left(x-1\right)\left(x+12\right)\)
b. \(2x^2-7x+9\)
Bài này mik kh pk lm, kh cs số nào nhân lại bằng 18 và cộng lại bằng -7 cả
c. \(x^2-12x+20\)
<=> \(x^2-2x-10x+20\)
<=> \(x\left(x-2\right)-10\left(x-2\right)\)
<=> \(\left(x-2\right)\left(x-10\right)\)
d. \(4x^2-13x+3\)
<=> \(4x^2-12x-x+3\)
<=> \(4x\left(x-3\right)-\left(x-3\right)\)
<=> \(\left(x-3\right)\left(4x-1\right)\)
e. \(x^2-8x-20\)
<=> \(x^2+2x-10x-20\)
<=> \(x\left(x+2\right)-10\left(x+2\right)\)
<=> \(\left(x+2\right)\left(x-10\right)\)
5.Chỉ cần bấm máy tính là xong,chúc bạn học tốt
có cách giải đầy đủ không ạ?