\(B=\frac{1}{|x-2|+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

Bạn tham khảo nhé !

Nguồn : hoidap247.net

undefined

Hok tốt

\(\text{Để }B=\frac{1}{\left|x-2\right|+3}\text{nhận giá trị lớn nhất thì :}\) 

\(\left|x-2\right|+3\)nhận giá trị nhỏ nhất

Vì | x - 2 | ≥ 0 ∀ x ∈ Z

=> | x - 2 | + 3 ≥ 3

\(B=\frac{1}{\left|x-2\right|+3}\text{nhận giá trị lớn nhất }\Leftrightarrow|x-2|+3=3\)

\(\Leftrightarrow B=\frac{1}{\left|x-2\right|+3}=\frac{1}{3}\)

2 tháng 8 2018

a) Vì : \(\left(x+1\right)^2\ge0\forall x\)

             \(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)

Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)

Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)

29 tháng 1 2019

b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy....

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

20 tháng 1 2017

Ta có:

(2x + \(\frac{1}{3}\))4 \(\ge\) 0 \(\forall\) x \(\in\) Z

=> (2x + \(\frac{1}{3}\))4 - 1 \(\ge\) -1 \(\forall\) x \(\in\) Z

=> A \(\ge\) -1 \(\forall\) x \(\in\) Z

Dấu "=" xảy ra khi (2x + \(\frac{1}{3}\))4 = 0

=> 2x + \(\frac{1}{3}\) = 0

=> 2x = 0 - \(\frac{1}{3}\)

=> 2x = \(\frac{-1}{3}\)

=> x = \(\frac{-1}{6}\)

Vậy GTNN của A = -1 khi x = \(\frac{-1}{6}\).

b) Lại có:

- (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 \(\le\) 0 \(\forall\) x \(\in\) Z

=> - (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 + 3 \(\le\) 3 \(\forall\) x \(\in\) Z

=> B \(\le\) 3 \(\forall\) x \(\in\) Z

Dấu "=" xảy ra khi:

(\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 = 0

=> \(\frac{4}{9}\)x - \(\frac{2}{15}\) = 0

=> \(\frac{4}{9}\)x = \(\frac{2}{15}\)

=> x = \(\frac{2}{15}\) : \(\frac{4}{9}\)

=> x = \(\frac{3}{10}\)

Vậy GTLN của B = 3 khi x = \(\frac{3}{10}\)

20 tháng 1 2017

a)Ta thấy: \(\left(2x+\frac{1}{3}\right)^4\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

\(\Rightarrow A\ge-1\)

Dấu "=" xảy ra khi \(\left(2x+\frac{1}{3}\right)^4=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy \(Min_A=-1\) khi \(x=-\frac{1}{6}\)

b)Ta thấy:\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)

\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)

\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)

\(\Rightarrow B\le3\)

Dấu "=" xảy ra khi \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Rightarrow x=\frac{3}{10}\)

Vậy \(Max_B=3\) khi \(x=\frac{3}{10}\)

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

23 tháng 4 2020

a

Ta có \(x^2\ge0\Rightarrow2x^2\ge0\Rightarrow2x^2+3\ge3\Rightarrow\frac{1}{2x^2+3}\le\frac{1}{3}\)

Dấu "=" xảy ra tại x=0

b

Ta có:\(\left(2-x\right)^2\ge0\Rightarrow\left(2-x\right)^2+1\ge1\Rightarrow\frac{1}{\left(2-x\right)^2+1}\le1\)

Dấu '=' xảy ra tại x=2

Vậy.........................................................

5 tháng 9 2020

\(A=\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\)

Ta có \(\left(x+\frac{4}{7}\right)^{24}\ge0\forall x\Rightarrow\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\ge\frac{-12}{293}\)

Đẳng thức xảy ra <=> x + 4/7 = 0 => x = -4/7

=> MinA = -12/293 <=> x = -4/7

\(B=-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)^{422}+5,98\)

Ta có \(\hept{\begin{cases}-\left(x+\frac{1}{6}\right)^{26}\le0\forall x\\-\left(x+y+\frac{3}{8}\right)^{442}\le0\forall x,y\end{cases}}\Rightarrow-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)+5,98\le5,98\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{6}=0\\x+y+\frac{3}{8}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=-\frac{5}{24}\end{cases}}\)

=> MaxB = 5, 98 <=> x = -1/6 ; y = -5/24

21 tháng 9 2016

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)