\(y=\left(x+3\right)\left(5-2x\right)\) vs \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)

Dấu "=" xảy ra khi \(2x+6=5-2x\Leftrightarrow x=-\frac{1}{4}\)

11 tháng 11 2016

Từ bđt Cauchy : \(a+b\ge2\sqrt{ab}\) ta suy ra được \(ab\le\frac{\left(a+b\right)^2}{4}\)

Áp dụng vào bài toán của bạn :

a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{\left(x+3+5-x\right)^2}{4}=...............\)

b/ Tương tự

c/ \(y=\left(x+3\right)\left(5-2x\right)=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=.............\)

d/ Tương tự

e/ \(y=\left(6x+3\right)\left(5-2x\right)=3\left(2x+1\right)\left(5-2x\right)\le3.\frac{\left(2x+1+5-2x\right)^2}{4}=.......\)

f/ Xét \(\frac{1}{y}=\frac{x^2+2}{x}=x+\frac{2}{x}\ge2\sqrt{x.\frac{2}{x}}=2\sqrt{2}\)

Suy ra \(y\le\frac{1}{2\sqrt{2}}\)

..........................

g/ Đặt \(t=x^2\) , \(t>0\) (Vì nếu t = 0 thì y = 0)

\(\frac{1}{y}=\frac{t^3+6t^2+12t+8}{t}=t^2+6t+\frac{8}{t}+12\)

\(=t^2+6t+\frac{8}{3t}+\frac{8}{3t}+\frac{8}{3t}+12\)

\(\ge5.\sqrt[5]{t^2.6t.\left(\frac{8}{3t}\right)^3}+12=.................\)

Từ đó đảo ngược y lại rồi đổi dấu \(\ge\) thành \(\le\)

 

 

NV
13 tháng 2 2020

a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)

Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)

b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)

\("="\Leftrightarrow x=3\)

c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)

\("="\Leftrightarrow x=-\frac{1}{4}\)

d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)

\("="\Leftrightarrow x=\frac{5}{4}\)

e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)

\("="\Leftrightarrow x=1\)

f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)

\("="\Leftrightarrow x=\sqrt{2}\)

g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)

\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)

NV
9 tháng 2 2020

a/ \(0\le\sqrt{5-x^2}\le\sqrt{5}\)

Đặt \(t=\sqrt{5-x^2}\Rightarrow0\le t\le\sqrt{5}\)

\(y=-t^2-t+5\)

Ta có \(-\frac{b}{2a}=-\frac{1}{2}\notin\left[0;\sqrt{5}\right]\)

\(y\left(0\right)=5\) ; \(y\left(\sqrt{5}\right)=-\sqrt{5}\)

\(\Rightarrow y_{max}=5\) khi \(x=\pm\sqrt{5}\)

\(y_{min}=-\sqrt{5}\) khi \(x=0\)

NV
9 tháng 2 2020

Câu 2:

Nếu không thêm điều kiện gì thì cả min lẫn max đều ko tồn tại

Câu 3: Đề ko rõ

Câu 4: \(x>1\)

\(y=\frac{x-1}{20}+\frac{1}{2\sqrt{x-1}}+\frac{1}{2\sqrt{x-1}}+\frac{1}{20}\)

\(y\ge3\sqrt[3]{\frac{x-1}{80\left(x-1\right)}}+\frac{1}{20}=\frac{3}{2\sqrt[3]{10}}+\frac{1}{20}\)

Dấu "=" xảy ra khi \(\frac{x-1}{10}=\frac{1}{\sqrt{x-1}}\Rightarrow x=\sqrt[3]{100}+1\)

NV
12 tháng 2 2020

\(A=\frac{1}{6}\left(6-2x\right)\left(12-3y\right)\left(2x+3y\right)\)

\(A\le\frac{1}{6}\left(\frac{6-2x+12-3y+2x+3y}{3}\right)^3=36\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

\(A=\frac{\frac{ab}{\sqrt{2}}\sqrt{2\left(c-2\right)}+\frac{bc}{\sqrt{3}}\sqrt{3\left(a-3\right)}+\frac{ca}{2}\sqrt{4\left(b-4\right)}}{abc}\)

\(A\le\frac{\frac{abc}{2\sqrt{2}}+\frac{abc}{2\sqrt{3}}+\frac{abc}{4}}{abc}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)

7 tháng 1 2020

@Akai Haruma cô giúp em với ạ

1 tháng 1 2020

Áp dụng BĐT Bunhiacopxki ta có :

\(\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le\left(3^2+4^2\right)\left(x-1+5-x\right)\)

\(\Leftrightarrow\left(3\sqrt{x-1}+4\sqrt{5-x}\right)^2\le100\)

\(\Leftrightarrow f\left(x\right)\le10\)

Dấu "=" xảy ra :

\(\Leftrightarrow\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\)

Vậy...