K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(P=3x^2+y^2-8x+2xy+16\)

\(P=\left(x^2+2xy+y^2\right)+\left(2x^2-8x+8\right)+8\)

\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\)

Vậy GTNN của P=8 <=> \(\orbr{\begin{cases}x+y=0\\x-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}y=-2\\x=2\end{cases}}\)

\(F=-x^2-y^2+2x-2y\\ F=-\left(x^2-2x+1\right)-\left(y^2+2y+1\right)+2\\ F=-\left(x-1\right)^2-\left(y+1\right)^2+2\le2\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y+1=0\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

vậy GTLN của F là 2 tại \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

7 tháng 8 2017

bạn giúp mình câu b) luôn được k ??

7 tháng 8 2017

\(K=-3x^2-y^2+8x-2xy+2\)

\(=\left(-2x^2+8x-8\right)+\left(-x^2-2xy-y^2\right)+10\)

\(=-2\left(x^2-4x+4\right)-\left(x^2+2xy+y^2\right)+10\)

\(=-2\left(x-2\right)^2-\left(x+y\right)^2+10\ge10\)

Xảy ra khi \(\left\{{}\begin{matrix}-2\left(x-2\right)^2=0\\-\left(x+y\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\x=-y\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

15 tháng 8 2017

P= - (x^2-8x+16+y^2-10y+25)-124

P=-[(x-4)^2+(y-5)^2]-124

-[(x-4)^2+(y-5)^2] nhỏ hơn hoặc bằng 0 => P nhỏ hơn hoặc bằng -124

=> GTLN của P=-124 khi x=4 và y=5

17 tháng 8 2016

Max B=2012

Khi x=0, y=0

tíc mình 

nha

17 tháng 8 2016

B=2012 là   S

B=2134

16 tháng 8 2016

GTLN của B=2012

tíc mình

nha