K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

em moi hoc lop 6.

Ai di ngang qua tich mnih cho tron 300 nhe ban

20 tháng 1 2016

gia tri nho nhat cua A bang 2

31 tháng 3 2017

2(x+3)^2 >= 0

=> min A= 0 <=> x+3=0

                   <=> x=-3

31 tháng 3 2017

Để biểu thức A đạt GTNN thì (x+3)2 phải có GTNN khi x+3=0 
                                                                          =>x    =0-3

                                                                          =>x    =-3

Thay -3 vào biểu thức ta được 2(-3+3)2=0

Vậy GTNN của biểu thức là 0 khi x=-3

2 tháng 2 2017

a) 

\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)

b) 

cách 1: ghép tạo số hạng (x-2015)

E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015

hoặc

x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản

-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014

(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014

2 tháng 4 2019

X=2013 và Y=2014 thỉ biểu thức đó có giá trị nn

2 tháng 4 2019

thi ban tim ho mk

23 tháng 3 2017

Để mình giúp nha

\(A=|x-2013|+|x-2014|+|x-2015|\)

\(=|x-2013|+|2014-x|+2015-x|\)

\(\ge|x-2013+2015-x|+|2014-x|\)

\(\ge2+|2014-x|=2\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

23 tháng 3 2017

Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|

Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2

Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)

|x−2014|\(\ge0\)

Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)

|x−2013|+|x−2014|+|x−2015|\(\ge\)2

Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014

14 tháng 6 2016

\(A=x^2-2x-y+3y-1\)

\(B=-2x^2+3y^2-5x+y+3\)

a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y+3y-1-2x^2+3y^2-5x+y+3\)

\(=\left(x^2-2x^2\right)+3y^2+\left(-2x-5x\right)+\left(-y+3y+y\right)+3-1\)

\(=-x^2+3y^2-7x+3y+2\)

\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y+3y-1+2x^2-3y^2+5x-y-3\)

\(=\left(x^2+2x^2\right)-3y^2+\left(-2x+5x\right)+\left(-y+3y-y\right)-1-3\)

\(=3x^2-3y+3x+y-4\)

b) tại x=1 ; x=-2 ta có: 
\(A=1^2-2.1-\left(-2\right)+3.\left(-2\right)-1\)

\(A=1-2+2-6-1=-6\)

Vậy -6 là giá trị của đa thức A tại x=1 y=-2

14 tháng 6 2016

a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)

                \(=-x^2+3y^2-7x+3y+2\)

\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)

           \(=3x^2-3y^2+3x+2y-4\)

b) \(A\left(1;-2\right)=1^2-2\cdot1-\left(-2\right)+3\cdot\left(-2\right)-1\)

                   \(=1-2+2-6-1\)

                   \(=-6\)