K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
K
2 tháng 8 2021
Ta có:
D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18
D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18
D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1
D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1
Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3
Hay x = 5 , y = -3
Đc chx bạn
CG
1
QB
1
14 tháng 8 2023
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
cho x>0,y>0,x+y=2018
\(B=\dfrac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\dfrac{2x^2+4xy+4xy+2y^2}{x^2+2xy+y^2}\\ =\dfrac{\left(2x^2+4xy+2y^2\right)+4xy}{x^2+2xy+y^2}\\ =\dfrac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\dfrac{4xy}{x^2+2xy+y^2}\\ =2+\dfrac{4xy}{\left(x+y\right)^2}\)
Áp dụng BDT Cô-si : \(4xy\le\left(x+y\right)^2\)
\(\Rightarrow B=2+\dfrac{4xy}{\left(x+y\right)^2}\le2+\dfrac{\left(x+y\right)^2}{\left(x+y\right)^2}\le2+1\le3\)
Dấu \("="\) xảy ra khi: \(x=y\)
Vậy \(B_{\left(Max\right)}=3\) khi \(x=y\)