\(A=\frac{1}{\sqrt{xy}}\) biết \(\frac{1}{\sqrt{x}}+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

sao không ai chú ý vậy

6 tháng 6 2019

ĐKXĐ: \(x\ge0;x\ne4.\)

\(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}.\)

\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x}-2}.\)

b) Để \(A=\frac{5}{4}\)\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{5}{4}\Leftrightarrow\frac{4\sqrt{x}}{4\left(\sqrt{x}-2\right)}-\frac{5\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-2\right)}=0\)

\(\Leftrightarrow\frac{4\sqrt{x}-5\sqrt{x}+10}{4\left(\sqrt{x}-2\right)}=0\Leftrightarrow-\sqrt{x}+10=0\)

\(\Leftrightarrow\sqrt{x}=10\Leftrightarrow x=100\left(tmđk\right).\)

Vậy để A=5/4 thì x=100

6 tháng 6 2019

Tự tìm ĐK nha

a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(A=\frac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-2}\)

b) \(A=\frac{5}{4}\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{5}{4}\)

\(\Leftrightarrow4\sqrt{x}=5\left(\sqrt{x}-2\right)\)

\(\Leftrightarrow4\sqrt{x}=5\sqrt{x}-10\)

\(\Leftrightarrow\sqrt{x}=10\)

\(\Leftrightarrow x=100\)( thỏa mãn )

Vậy...

17 tháng 8 2016

bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\) 

Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)

               \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

               \(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

                \(B=\frac{-1}{\sqrt{x}+1}\)

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

7 tháng 10 2017

\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{9-x}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\frac{3\sqrt{x}-x+x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\frac{3\sqrt{x}+9}{9-x}\right):\left(\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}:\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{3-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

19 tháng 3 2017

Ta đặt \(x=tanA;y=tanB;z=tanC\) với \(ABC\) là các góc tam giá từ đây cần c/m

\(sinA+sinB+sinC\le\frac{3\sqrt{3}}{2}\)

tài liệu c/m BĐT này đầy trên mạng bn có thể tham tham khảo

VD:Cm : sinA+sinB+sinC bé hơn hoặc bằng (3* căn3)/2? | Yahoo Hỏi & Đáp

19 tháng 3 2017

Dự đoán khi \(x=y=z=\frac{1}{\sqrt{3}}\) thì ta tìm được \(P=\frac{3\sqrt{3}}{2}\)

Ta sẽ chứng minh nó là GTNN

Thật vậy, ta cần chứng minh 

\(Σ\frac{1}{\sqrt{x^2+xy+xz+yz}}\le\frac{3\sqrt{3}}{2\sqrt{xy+xz+yz}}\left(xy+yz+xz=1\right)\)

\(\LeftrightarrowΣ\sqrt{x+y}\le\frac{3\sqrt{3\left(x+y\right)\left(x+z\right)\left(y+z\right)}}{2\sqrt{xy+xz+yz}}\)

Nhưng theo BĐT Cauchy-Schwarz ta có: 

\(\left(Σ\sqrt{x+y}\right)^2\le\left(1+1+1\right)Σ\left(x+y\right)=6\left(x+y+z\right)\)

Như vậy, ta còn phải chứng minh :

\(\sqrt{6\left(x+y+z\right)}\le\frac{3\sqrt{3\left(x+y\right)\left(x+z\right)\left(y+z\right)}}{2\sqrt{xy+xz+yz}}\)

\(\Leftrightarrow9\left(x+y\right)\left(x+z\right)\left(y+z\right)\ge8\left(x+y+z\right)\left(xy+xz+yz\right)\)

\(\LeftrightarrowΣz\left(x-y\right)^2\ge0\) luôn đúng. Nên \(P_{Min}=\frac{3\sqrt{3}}{2}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)