Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)
Vậy \(0\le x< 9\)thì \(Q< 1\)
Điều kiện:\(\hept{\begin{cases}x\ge0\\9-x\ne0\\\sqrt{x}-2\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge0\\x\ne9\\x\ne\pm4\end{cases}}\)
P=(\(\frac{2\sqrt{x}}{9-x}+\frac{1}{3+\sqrt{x}}\))\(\frac{x\left(3-\sqrt{x}\right)}{3+\sqrt{x}}\)
=\(\frac{2\sqrt{x}+3-\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\).\(\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)
=\(\frac{3+\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)
=\(\frac{x}{\sqrt{x}-2}\)(với x>=0; x khác 9; x khác +- 4)
\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{9-x}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{3\sqrt{x}-x+x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\left(\frac{3\sqrt{x}+9}{9-x}\right):\left(\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}:\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{3-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)