\(6-\left(3x-\frac{1}{2}\right)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

có (3x-1/2)^2\(\ge\)0 với mọi x\(\in\)R

=>6- (3x-1/2)^2\(\le\)6 với mọi x\(\in\) R

 dấu bằng xảy ra khi x =1/6

9 tháng 8 2016

a) \(A=\left(2x-3\right)^2-\frac{1}{2}\)

Vì: \(\left(2x-3\right)^2\ge0\)

=> \(\left(2x-3\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Vậy GTNN của A là \(-\frac{1}{2}\) khi \(x=\frac{3}{2}\)

b) \(B=\frac{1}{2}-\left|2-3x\right|\)

Vì: \(\left|2-3x\right|\ge0\)

=> \(-\left|2-3x\right|\le0\)

=> \(\frac{1}{2}-\left|2-3x\right|\le\frac{1}{2}\)

Vậy GTLN của B là \(\frac{1}{2}\) 

17 tháng 7 2017

a) ta có \(x^2\ge0\Leftrightarrow x^2+2\ge2.\)

\(\frac{1}{x^2+2}\le\frac{1}{2}\) vậy GTLN là \(\frac{1}{2}\)

b) ta có \(2x^2\ge0\Leftrightarrow2x^2+5\ge5\)

\(\frac{1}{2x^2+5}\le\frac{1}{5}\) vậy GTLN là \(\frac{1}{5}\)

c) ta có \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+4\ge4\)

\(\frac{8}{\left(x-1\right)^2+4}\le\frac{8}{4}\) vậy GTLN là \(\frac{8}{4}=2\)

3 tháng 6 2019

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!