Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)
\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)
\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)
\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)
\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)
Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức
Bài tiếp theo cũng làm tương tự

a/ Ta có
P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)
= \(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)

a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{-3}{\sqrt{x}+3}\)

1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)(đk :\(x\ge\frac{2}{3}\)) (1)
Đặt \(4x+1=a\left(a\ge0\right)\) , \(3x-2=b\left(b\ge0\right)\)
Có \(a-b=4x+1-3x+2=x+3\)
=> \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)=0\)
=> \(\sqrt{a}-\sqrt{b}=0\)(vì \(\sqrt{a}+\sqrt{b}+5\ge5\) do a,b\(\ge0\))
<=> \(\sqrt{a}=\sqrt{b}\) <=>\(4x+1=3x-2\) <=> \(x=-3\)(k tm đk)
Vậy pt (1) vô nghiệm
1,\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) (1) (đk: \(x\ge\frac{2}{3}\))
Đặt \(4x+1=a\left(a\ge0\right)\) ,\(3x-2=b\left(b\ge0\right)\)
=> \(a-b=4x+1-3x+2=x+3\)
Có \(\sqrt{a}-\sqrt{b}=\frac{a-b}{5}\)
<=> \(5\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)\left(5-\sqrt{a}-\sqrt{b}\right)=0\)
=> \(\left[{}\begin{matrix}\sqrt{a}=\sqrt{b}\\5=\sqrt{a}+\sqrt{b}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}4x+1=3x-2\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=-3\left(ktm\right)\\25=a+b+2\sqrt{ab}\end{matrix}\right.\)
=> 25=4x+1+3x-2+\(2\sqrt{\left(4x+1\right)\left(3x-2\right)}\)
<=> 26-7x=2\(\sqrt{12x^2-5x-2}\)
<=> \(676-364x+49x^2=48x^2-20x-8\)
<=> \(676-364x+49x^2-48x^2+20x+8=0\)
<=> \(x^2-344x+684=0\)
<=> \(x^2-342x-2x+684=0\)
<=> \(x\left(x-342\right)-2\left(x-342\right)=0\)
<=> (x-2)(x-342)=0
=> \(\left[{}\begin{matrix}x=2\left(tm\right)\\x=342\left(ktm\right)\end{matrix}\right.\)
Vậy pt (1) có nghiệm x=2

\(A=\)\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\) \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(-\frac{\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+x+1}\)
học tốt
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(A=\frac{x+2}{\sqrt{x}^3-1^3}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có : x + 1 \(\ge\)\(2\sqrt{x}\)nên \(x+\sqrt{x}+1\ge3\sqrt{x}\)
\(\Rightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\le\frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)
Vậy GTLN của A là \(\frac{1}{3}\)\(\Leftrightarrow x=1\)

a: \(P=\dfrac{-1+2\sqrt{x}-x+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}:\dfrac{2x+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:
\(P=\dfrac{\sqrt{5}-1}{\sqrt{5}-2}=3+\sqrt{5}\)

Giúp tôi giải toán và làm văn
Tất cảToánVăn - Tiếng ViệtTiếng Anh

26 tháng 7 2016 lúc 15:48
I don't need nghĩa là gì , đoán đúng cho 10 nghìn ,cấm tra google dịch
Được cập nhật Vài giây trước


Thống kê hỏi đáp
Báo cáo sai phạm
i don't need la tao ko can

Thống kê hỏi đáp
Báo cáo sai phạm
Ôi trời câu hỏi của bạn trờ thành câu trả lời luôn hả ?

Thống kê hỏi đáp
Báo cáo sai phạm
ngu đâu mà trả lời .
hứ

10 tháng 3 lúc 14:50
Choa≥0,b≥0 Chứng minh bất đẳng thức Cauchy : a+b2 ≥√ab
Được cập nhật 2 phút trước


Thống kê hỏi đáp
Báo cáo sai phạm
BĐT tương đương :
a+b≥2√ab
⇔(a+b)2≥4ab
⇔(a−b)2≥0 ( luôn đúng )
Vậy ta có đpcm
Dấu "=" xảy ra ⇔a=b

\(\frac{1}{2}\left(\frac{1}{\sqrt{2010}}+\frac{1}{\sqrt{2009}}\right)-A=\frac{1}{2}\left[\frac{1}{\sqrt{2010}\left(x+2\right)}\left(\sqrt{x-2008}-\sqrt{2010}\right)^2+\frac{1}{\sqrt{2009}x}\left(\sqrt{x-2009}-\sqrt{2009}\right)^2\right]\ge0\)