\(P=\frac{2007x+2008\sqrt{1-x^2}+2009}{\sqrt{1-x^2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT : 

\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)

Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4

Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4

11 tháng 11 2016

đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4

cái này mới đúng nhé!

5 tháng 5 2019

sử dụng phương pháp miền giá trị

5 tháng 5 2019

bạn nói rõ hơn được không?

19 tháng 11 2016

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

19 tháng 11 2016

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé