K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2021

1)  A = -x²-2x+3

=-(x²+2x+1) + 4

=-(x+1)² + 4 ≤ 4

Dấu "=" xảy ra ⇔ x=-1

Vậy GTLN của A =4 tại x=-1

27 tháng 3 2021

GTLL LÀ GÌ

21 tháng 11 2016

khong co GTLN

GTNN=1.5 khi x=-2

21 tháng 11 2016

ngonhuminh Thanks 

4 tháng 4 2016

Bai 2; x=1 hoac x= -1 

12 tháng 1 2016

sai  đề hay sao ý phải là GTNN hay sao ý

46:

\(A=\dfrac{2x^2\left(3x^2-2x+1\right)}{2x^2}-\left(3x^2-x-6x+2\right)\)

\(=3x^2-2x+1-3x^2+7x-2=5x-1\)

Khi x=-0,2 thì A=-1-1=-2

45:

a: \(=\dfrac{-5x^6}{3x^2}=-\dfrac{5}{3}x^4\)

c: \(=\dfrac{2x\left(2x^2-\dfrac{3}{2}x+1\right)}{2x}=2x^2-\dfrac{3}{2}x+1\)

\(4x^2+4x+6\)

\(=\left(2x\right)^2+2.2x.1+1+5\)

\(=\left(2x+1\right)^2+5\ge5\)

\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)

\(x^2+6x+11\)

\(=x^2+2.x.3+9+2\)

\(=\left(x+3\right)^2+2\ge2\)

\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)

\(x^2-3x+1\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)

\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)

3 tháng 8 2016

B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7

             Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2 

C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2

              Vậy MinC = 2 khi x + 3 = 0 => x = -3

D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

              Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2

25 tháng 8 2019

a. Ta có: \(3x2xy-\frac{2}{3}x^2y-4x^2.\frac{1}{3}y=6x^2y-\frac{4}{3}x^2y=\left(6-\frac{2}{3}-\frac{4}{3}\right)x^2y=4x^2y.\)

b. Thay \(x=-2,y=\frac{1}{8}\)vào đơn thức \(4x^2y\), ta được: \(4x^2y=4\left(-2\right)^2.\frac{1}{8}=2\).

Vậy, giá trị của biểu thức \(x=-2,y=\frac{1}{8}\rightarrow=2\) 

a: A(-2)=5(-2)^2-3*(-2)-16

=20+6-16=10

b: B=4x^2y^2*4x^6y^4=16x^8y^6

Hệ số là 16

Bậc là 14

18 tháng 7 2020

a) 2x2 - 4x = 2x(x- 2)  có giá trị dương 

Th1: 2x > 0 và x - 2 > 0 

<=> x > 0 và x > 2 

<=> x > 2 

Th2: 2x < 0 và x - 2 < 0 

<=> x < 0 và x < 2 

<=> x < 0 

Vậy 2x^2 - 4x  có giá trị dương khi và chỉ khi x < 0 hoặc x > 2

b) ( 3x + 1 ) ( 4x - 3 )  dương 

Th1: 3x + 1 > 0 và 4x - 3 > 0 

<=> x > -1/3 và x > 3/4 

<=> x >3/4 

Th2: 3x + 1 < 0 và 4x - 3 < 0 

<=> x < -1/3 và x < 3/4

<=> x < -1/3

Kết luận: ...

5 tháng 4 2020

a) \(A=\left(x-1\right)^2\ge0\)

Dấu " = " xảy ra :

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy \(Min_A=0\Leftrightarrow x=1\)

b) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow B=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_B=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

c) Ta thấy : \(x^4\ge0\)

                   \(x^2\ge0\)

\(\Leftrightarrow C=x^4+3x^2+2\ge2\)

Dấu " = " xảy ra ;

\(\Leftrightarrow x=0\)

Vậy \(Min_C=2\Leftrightarrow x=0\)

d) \(D=x^2+4x-100\)

\(\Leftrightarrow D=x^2+4x+4-104\)

\(\Leftrightarrow D=\left(x+2\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy \(Min_D=-104\Leftrightarrow x=-2\)