Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak
HD:
Dễ thấy b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4
Biến đổi P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x
= (x2 – 2)2 – x(x2 – 2) – 6x2
Từ đó Q(y) = y2 – xy – 6x2
Tìm m, n sao cho m.n = - 6x2 và m + n = - x chọn m = 2x, n = -3x
Ta có: Q(y) = y2 + 2xy – 3xy – 6x2
= y(y + 2x) – 3x(y + 2x)
= (y + 2x)(y – 3x)
Do đó: P(x) = (x2 + 2x – 2)(x2 – 3x – 2).
a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)
\(y^2\ge0\Rightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\)
\(\Leftrightarrow\left(x+y+3\right)^2\le1\rightarrow\left|x+y+3\right|\le1\)
\(\Rightarrow-1\le x+y+3\le1\Leftrightarrow2012\le B\le2014\)
dấu = xảy ra: #MIn: \(\left\{\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
#MAX:\(\left\{\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0
<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0
* 1-3y=0 <=> y=1/3
* 2y - 10= 0 <=> y=5
vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5
b, Phương trình nhận y=2 làm nghiệm nên ta có:
(2x - 6 + 7)(3x+ 4 - 1)=0
<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0
<=> x=-1/ 2 hoặc x=-1
vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1
a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0
<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0
* 1-3y=0 <=> y=1/3
* 2y - 10= 0 <=> y=5
vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5
b, Phương trình nhận y=2 làm nghiệm nên ta có:
(2x - 6 + 7)(3x+ 4 - 1)=0
<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0
<=> x=-1/ 2 hoặc x=-1
vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1
\(x^2+2y^2+2xy-2x+2y+5=0\)
\(\Leftrightarrow\left(x^2+2xy-2x+y^2-2y+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+2\right)^2=0\left(1\right)\)
Ta thấy: \(\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\)
\(\Rightarrow\left(x+y-1\right)^2+\left(y+2\right)^2\ge0\left(2\right)\)
Từ (1) và (2) suy ra \(\begin{cases}\left(x+y-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x+y-1=0\\y+2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x+y=1\\y=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x-2=1\\y=-2\end{cases}\)\(\Leftrightarrow\begin{cases}x=3\\y=-2\end{cases}\)
Vậy các số x,y thỏa mãn là x=3; y=-2
\(x^2+2y^2+2xy-2x+2y+5=0\)
\(\Leftrightarrow x^2-2x+2xy+1-2y+y^2+y^2+4y+4=0\)
\(\Leftrightarrow x^2-2x\left(1-y\right)+\left(1-y\right)^2+y^2+4y+4=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(x+y-1\right)=0and\left(y+2\right)^2=0\)
vậy x=3;y=-2