K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Với điều kiện như đã ghi thì $A$ không có min bạn nhé. Bạn xem lại đề.

20 tháng 4 2021

nếu ko có đk thì làm ntn ạ

5 tháng 5 2021

tìm cả đk giúp mik vs

NV
5 tháng 5 2021

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)

a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

6 tháng 12 2023

P = (\(\dfrac{1}{\sqrt{x}-1}\) - \(\dfrac{1}{\sqrt{x}}\)) : (\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) - \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)) với  0 < \(x\) ≠ 1; 4

P = \(\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}\): (\(\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right).\left(\sqrt{x-2}\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\))

P = \(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\)\(\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)

P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) : \(\dfrac{3}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\)

P = \(\dfrac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\) \(\times\) \(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\)

P = \(\dfrac{\sqrt{x}-2}{3.\sqrt{x}}\)

P = \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\) 

6 tháng 12 2023

b, P = \(\dfrac{1}{4}\)

⇒ \(\dfrac{\sqrt{x}.\left(\sqrt{x}-2\right)}{3x}\)  = \(\dfrac{1}{4}\)

⇒4\(x\) - 8\(\sqrt{x}\) = 3\(x\)

⇒ 4\(x\) - 8\(\sqrt{x}\) - 3\(x\) = 0

     \(x\) - 8\(\sqrt{x}\)   = 0

      \(\sqrt{x}\).(\(\sqrt{x}\) - 8) = 0

       \(\left[{}\begin{matrix}x=0\\\sqrt{x}=8\end{matrix}\right.\)

      \(\left[{}\begin{matrix}x=0\\x=64\end{matrix}\right.\)

      \(x=0\) (loại)

      \(x\) = 64

a: Ta có: \(A=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:
a.

\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)

\(=\sqrt{x}(\sqrt{x}-1)-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)

\(=x-\sqrt{x}+1\)

b.

\(A=x-\sqrt{x}+1=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy $A_{\min}=\frac{3}{4}$ khi $\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}$

Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)

\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}:\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

Để A nguyên thì \(\sqrt{x}-1\in\left\{-1;1;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

26 tháng 8 2021

a. ĐKXĐ: \(x>0\)

\(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{x+\sqrt{x}}{\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b. Để \(P=-1\) thÌ  \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=-1\) 

\(\Leftrightarrow x+\sqrt{x}+1=-\sqrt{x}\)

\(\Leftrightarrow x+2\sqrt{x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=0\)

\(\Leftrightarrow\sqrt{x}+1=0\)

\(\Leftrightarrow\sqrt{x}=-1\) ( vô lý )

Vậy không có x thỏa mãn ycbt

c. Ta có \(x=\dfrac{8}{\sqrt{5}-1}-\dfrac{8}{\sqrt{5}+1}=\dfrac{8\sqrt{5}+8-8\sqrt{5}+8}{5-1}=\dfrac{16}{4}=4\)

Thay x=4 vào P, ta được

\(P=\dfrac{4+\sqrt{4}+1}{\sqrt{4}}=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)

d. \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\) \(\Rightarrow P-3=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-3\)

\(\Rightarrow P-3=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

Mà \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\sqrt{x}>0\end{matrix}\right.\) \(\Rightarrow P-3\ge0\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=0\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

Vậy \(P_{min}=3\) khi \(x=1\)

 

 

7 tháng 7 2021

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)

\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)

Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)

 

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:
a.

\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)

\(=\sqrt{x}(\sqrt{x}-1)-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}+1\)

b.

$A=x-\sqrt{x}+1=(x-\sqrt{x}+\frac{1}{4})+\frac{3}{4}$

$=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}$

$\Rightarrow A_{\min}=\frac{3}{4}$

Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$