K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

\(A=\left|x-\frac{1}{2}\right|-\frac{3}{4}\)

Vì \(\left|x-\frac{1}{2}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\frac{1}{2}\right|-\frac{3}{4}\ge-\frac{3}{4}\forall x\)

\(\Rightarrow A_{min}=-\frac{3}{4}\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2}\)

22 tháng 8 2021

\(A=\left|x-\frac{1}{2}\right|-\frac{3}{4}\ge-\frac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTNN của A bằng -3/4 tại x = 1/2 

\(\left|x-\dfrac{2}{3}\right|-4\ge-4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)

20 tháng 3 2023

A = 5x² + 6

Do x² ≥ 0 

⇒ 5x² ≥ 0

⇒ 5x² + 6 ≥ 6

Vậy giá trị nhỏ nhất của A là 6 khi x = 0

--------------------

B = 4(2x - 4)² + 2023

Do (2x - 4)² ≥ 0

⇒ 4(2x - 4)² ≥ 0

⇒ 4(2x - 4)² + 2023 ≥ 2023

Vậy giá trị nhỏ nhất của B là 2023 khi x = 2

23 tháng 3 2023

cqảm ơn

 

1 tháng 11 2017

a, A=15-|x+1|

Co: |x+1|> hoac = 0 voi moi x.

=>15-|x+1|< hoac = 15 vs moi x.

MAX A=15 khi |x+1|=0

                       =>x+1=0

                              x=-1.

b,Co: |x-2|> hoac bang 0.

=>18+|x-2|> hoac bang 18.

Min B=18 khi |x+2|=0

                   =>x+2=0

                        x=-2

Nho k cho mk nhe

2 tháng 11 2017

cau b la gia tri nho nhat  ban nhe  

24 tháng 11 2016

Ta có: (2x+1)^2 lớn hơn hoặc bằng 0 suy ra (2x+1)^2+4 lớn hơn hoặc bằng 0 suy ra căn (2x+1)+4 lớn hơn hoặc bằng 0

Lại có:|4y^2-1|lớn hơn hoặc bằng 0 suy ra 3.|4y^2-1| lớn hơn hoặc bằng 0 

nên GTNN của A =5 khi và chỉ khi (2x+1)^2+4=0 và 4y^2-1=0

Với (2x-1)^2-4=0 suy ra (2x+1)^2=-4 suy ra 2x+2= -2 hoặc 2. Nếu 2x+1=-2 suy ra x=-3/2; nếu 2x+1=2 thì x=1/2

Với 4y^2-1=0 suy ra 4y^2=1 suy ra y^2=1/4 suy ra y=1/2 và y=-1/2

24 tháng 11 2016

giá trị nhỏ nhất là 10 đạt đc khi x = 0,5 và y = 0

g

AH
Akai Haruma
Giáo viên
31 tháng 7

Lời giải:

$x-y=2\Rightarrow x=y+2$

$C=|x+1|+|2y+1|=|y+2+1|+|2y+1|=|y+3|+|2y+1|$

Nếu $y\geq \frac{-1}{2}$ thì:

$C=y+3+2y+1=4y+4\geq 4.\frac{-1}{2}+4=2$
Nếu $\frac{-1}{2}> y\geq -3$ thì:

$C=y+3+[-(2y+1)]=2-y> 2-\frac{-1}{2}=2,5$

Nếu $y< -3$ thì:

$C=-y-3-2y-1=-4y-4=-4(y+1)> -4(-3+1)=8$

Từ các TH trên suy ra $C_{\min}=2$ khi $y\geq \frac{-1}{2}$

1 tháng 10 2017

D = |x - 2| + |x - 3| + |x - 4| = (|x - 2| + |4 - x|) + |x - 3|

Ta có: \(\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|=2\)

Mà \(\left|x-3\right|\ge0\)

\(\Rightarrow D\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2\right)\left(4-x\right)\ge0\\x-3=0\end{cases}\Rightarrow\hept{\begin{cases}2\le x\le4\\x=3\end{cases}\Rightarrow}x=3}\)

Vậy MaxD = 2 khi x = 3

1 tháng 10 2017

MinD chứ k phải MaxD nhé

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

13 tháng 8 2020

Bài làm:

a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)

Vậy Min(A) = 0 khi x=3/4

b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)

Vậy Max(B) = 0 khi x = -2020

13 tháng 8 2020

A = | x - 3/4 |

\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)

Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4

Vậy AMin = 0 , đạt được khi x = 3/4

B = - | x + 2020 |

\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)

\(\Rightarrow B\le0\)

Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020

Vậy BMax = 0, đạt được khi x = -2020