Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Muốn C \(\in\)Z thì x+12 \(⋮\)x+5
\(\Rightarrow\) x+5+7 \(⋮\)x+5
\(\Rightarrow\) 7 \(⋮\)x+5
\(\Rightarrow\) x+5 \(\in\){-7 ; -1 ; 1 ; 7}
TH1: x+5 = -7 \(\Rightarrow\) x= -12
TH2: x+5 = -1 \(\Rightarrow\) x= -6
TH3: x+5= 1 \(\Rightarrow\) x= -4
TH4: x+5= 7 \(\Rightarrow\)x= 2
Vậy x\(\in\){ -12 ; -6 ; -4 ; 2 } thì \(\frac{x+12}{x+5}\)có giá trị nguyên
a) a^2>0. Nếu a^2= (-).(-); (+).(+) thì ta có
th1: (+) . (+) = (+) Chọn (+)2 a^2>0
th2: (-). (-) = (+) Chọn (-)2 a^2>0
Vậy...
làm bổ sung cho câu b) là : muốn A có giá trị nhỏ nhất thì (x-8)2 phải có giá trị nhỏ nhất mà giá trị nhỏ nhất của (x-8)2 là 0
=) A có giá trị nhỏ nhất là -2018
c) : muốn B có giá trị lớn nhất thì -(x+5)2 phải có giá trị lớn nhất mà -(x+5)2 có giá trị lớn nhất là \(\infty\)mà không có số nào là số lớn nhất =) B vẫn chỉ có giá trị lớn nhất là \(\infty\)
A=|x-12|+|y+9|+2017
Có:|x-12|>=0;|y+9|>=0
=>A>=0
=>để A đạt GTNN thì |x-12|+|y+9| nhỏ nhất
Mà |x-12|+|y+9| nhỏ nhất khi |x-12|+|y+9|=0
Suy ra: GTNN của a là 2017.
mình làm hộ bn câu A thôi
Ta có \(\left|x-12\right|\ge0\)
\(\left|y+9\right|\ge0\)
=> \(A\ge2017\)
Vậy A đạt GTNN là 2017 khi và chỉ khi x=12 và y=-9
\(B=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
Vậy B đạt GTNN khi và chỉ khi \(\frac{1}{x-4}\) nhỏ nhất
=>x-4=-1
=>x=3
Vậy B đạt GTNN là 4 khi và chỉ khi x=3
a) Vì \(x-49\ne0\Rightarrow x\ne49\)
Nên để A đạt GTLN <=> x - 49 đạt GTNN <=> x là số nguyên dương nhỏ nhất
Dấu "=" xảy ra khi x - 49 = 1 => x = 50
Vậy Amax = 2015 <=> x = 50
b) Để A đạt GTNN <=> x - 49 đạt GTLN <=> x là số nguyên âm lớn nhất
Dấu "=" xảy ra khi x - 49 = -1 => x = 48
Vậy Amin = 2015/8 <=> x = 48
a,A có giá trị nhỏ nhắt khi x-49 là số nguyên dương nhỏ nhất
suy ra x-49=1 suy ra x=1+49 =50
b,A có giá trị nhỏ nhất khi x-49 là số nguyên âm lớn nhất
suy ra x-49 =-1 suy ra x=-1+49=48
A = | x - 2 | + | y + 5 | - 15
Ta có \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y+5\right|\ge0\end{cases}\forall xy}\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|\ge0\forall xy̸\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15\forall xy\)
\(\Rightarrow A\ge-15\forall xy\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-2=0\\y+5=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)
Vạy Min A = - 15 <=> x = 2 và y = - 5
@@ Học tốt
Chiyuki Fujito
Ta có: |x - 2| \(\ge\)0 \(\forall\)x; |y + 5| \(\ge\)0 \(\forall\)y
=> |x - 2| + |y + 5| - 15 \(\ge\)15 \(\forall\)xy
=> A \(\ge\)-15
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y+5=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=-5\end{cases}}\)
Vậy MinA = -15 khi x = 2 và y= -5
để A nhỏ nhất thì Ix-3I+Ix+1I nhỏ nhất
\(\Leftrightarrow\)Ix-3+x+1I nhỏ nhất
\(\Leftrightarrow\)Ix+x+1-3I nhỏ nhất
\(\Leftrightarrow\)I2x+(-2)I nhỏ nhất
Ta có: I2x+(-2)I > hoac = 0
\(\Rightarrow\)Để A nhỏ nhất thì I2x+(-2)I=0
\(\Leftrightarrow\)2x+(-2) =0
\(\Leftrightarrow\)2x=2
\(\Leftrightarrow\)x=1
vậy A = 0 với x=1
Có |2x-18|\(\ge\)0
|5y+25|\(\ge\)0
=>|2x-18|+|5y+25|+69\(\ge\)69
Dấu bằng xảy ra khi
\(\hept{\begin{cases}\left|2x-18\right|\\\left|5y+25\right|\end{cases}}\)=0 =>2x-18=0 và 5y+25=0
=>2x=18 và 5y=25
=>x=9 và y=5