K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

x^2-4x+7=(x^2-4x+4)+3=(x-2)^2+3>3

=> min=3<=>(x-2)^2=0

<=>x=2

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

7 tháng 11 2021

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

a) A=x^2-2x+7
=x2
-2x+1+6
=(x-1)2+6
vì (x-1)2 ≥ với mọi x nên
(x-1)2+6 ≥ 6
dấu "=" xảy ra khi:
x-1=0
<=>x=1
Vậy GTNN của A là 6 tại x=1
b)B=4x-4x^2
 =-4x2+4x-1+1
=-(4x2+4x+1)+1
=-(2x+1)2+1
vì -(2x+1)2 ≤ 0 nên
-(2x+1)2+1 ≤ 1
Dấu "=" xảy ra khi
2x+1=0
<=>x=-1/2
Vậy GTLN của B là 1 tại x=-1/2

:D

Có thể làm theo cách này :

a) A = x^2 - 2x + 7
=> A = x^2 - 2x . 1/2 + (1/2)^2 + 27/4
        = [x^2 - 2x . 1/2 + (1/2)^2] + 27/4
        = (x - 1/2)^2 + 27/4
mà   (x - 1/2)^2  > 0
=> (x - 1/2)^2 + 27/4  > 27/4
Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2

:D

14 tháng 7 2015

a) A=x^2-2x+7

=x2-2x+1+6

=(x-1)2+6

vì (x-1)2\(\ge\)với mọi x nên

(x-1)2+6\(\ge\)6

dấu "=" xảy ra khi:

x-1=0

<=>x=1

Vậy GTNN của A là 6 tại x=1

 

b)B=4x-4x^2

 =-4x2+4x-1+1

=-(4x2+4x+1)+1

=-(2x+1)2+1

vì -(2x+1)2\(\le\)0 nên

-(2x+1)2+1\(\le\)1

Dấu "=" xảy ra khi

2x+1=0

<=>x=-1/2

Vậy GTLN của B là 1 tại x=-1/2

14 tháng 7 2015

a) A = x2 - 2x + 7

=> A = x2 - 2x . 1/2 + (1/2)2 + 27/4

        = [x2 - 2x . 1/2 + (1/2)2] + 27/4

        = (x - 1/2)2 + 27/4

mà   (x - 1/2)2  > 0

=> (x - 1/2)2 + 27/4  > 27/4

Vậy giá trị nhỏ nhất của A = 27/4 tại x = 1/2

26 tháng 7 2021

\(x^2-6x+11=x^2-2.3.x+9+2=\left(x-3\right)^2+2\ge2\)

dấu"=" xảy ra<=>x=3

\(4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)

\(=-[\left(x-2\right)^2-7]\le7\) dấu"=" xay ra<=>x=2

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x=2

NV
24 tháng 3 2023

\(N=\dfrac{-5}{x^2-4x+7}=\dfrac{-5}{\left(x-2\right)^2+3}\ge-\dfrac{5}{3}\)

\(N_{min}=-\dfrac{5}{3}\) khi \(x=2\)

4 tháng 7 2017