Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M có giá trị nguyên thì x - 2 chia hết cho x + 3
=> (x + 3) - 5 chia hét cho x + 3
=> 5 chia hết cho x + 3
=> x + 3 thuộc Ư(5) = {-1;1;-5;5}
Ta có:
x + 3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1
vì vế trái mỗi số luôn lớn hơn hoặc bằng 0 nên tổng lớn hơn hoặc bằng 0
=>5x-10 dương=>x dương x>2
vì x dương như lập luận thì có thể phá dấu
x+1+x-2+x+7=5x-10
3x+6=5x-10
3x=5x-10-6
2x=16
x=8
chúc học tốt
BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)
\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)
\(=\left|x-1\right|+\left|5-x\right|\)
Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)
Vậy: \(m_{min}=4\)
\(\left|x-1\right|+\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(=\left(\left|x-1\right|+\left|5-x\right|\right)+\left(\left|x-3\right|+\left|7-x\right|\right)\ge\left|x-1+5-x\right|+\left|x-3+7-x\right|=4+4=8\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(5-x\right)\ge0\\\left(x-3\right)\left(7-x\right)\ge0\end{cases}}\Leftrightarrow3\le x\le5\).