Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
\(A=x^2+5x+7\)
\(A=\left(x^2+5x+\frac{25}{4}\right)+\frac{3}{4}\)
\(A=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+\frac{5}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x+\frac{5}{2}=0\)
\(\Leftrightarrow\)\(x=\frac{-5}{2}\)
Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=\frac{-5}{2}\)
Chúc bạn học tốt ~
\(B=6x-x^2-5\)
\(-B=x^2-6x+5\)
\(-B=\left(x^2-6x+9\right)-4\)
\(-B=\left(x-3\right)^2-4\ge-4\)
\(B=-\left(x-3\right)^2+4\le4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTLN của \(B\) là \(4\) khi \(x=3\)
Chúc bạn học tốt ~
Để M=a+b+c nhỏ nhất thì a,b,c phải nhỏ nhất
mà a\(\ge\)5 , b\(\ge\)6 , c\(\ge\)7
và a\(^2\)+b\(^2\)+c\(^2\)=125
\(\Rightarrow\)a,b,c lần lượt là 5 ,6,8 (tmđk)
GTNN của M là 19
Câu trả lời hay nhất: Theo hằng đẳng thức
a^2+b^2=(a+b)^2-2ab;
c^2+d^2=(c+d)^2-2cd.
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ;
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn,
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì
a+b+c+d>=4 nên a+b+c+d là hợp số.
Ta có: A=3(a+c)(b+d) <=> 2A/3 = 2(a+c)(b+d)
Theo Cauchy => 2A/3 \(\le\)(a+c)2+(b+d)2
Mặt khác, theo BĐT Bunhiacopxki có:
\(\left(a+c\right)^2=\left(1.a+\frac{1}{\sqrt{2}}.\sqrt{2}c\right)^2\le\left(1+\frac{1}{2}\right)\left(a^2+2c^2\right)=\frac{3}{2}\left(a^2+2c^2\right)\)
Tương tự: \(\left(b+d\right)^2=\left(1.b+\frac{1}{\sqrt{2}}.\sqrt{2}d\right)^2\le\left(1+\frac{1}{2}\right)\left(b^2+2d^2\right)=\frac{3}{2}\left(b^2+2d^2\right)\)
=> \(\frac{2A}{3}\le\frac{3}{2}\left(a^2+b^2+2c^2+2d^2\right)=\frac{3}{2}.1=\frac{3}{2}\)
=> \(A\le\frac{9}{4}=>A_{max}=\frac{9}{4}\)
Bài 1
a)\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
MIN = \(-\frac{1}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)
Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\to2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Do vậy \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\to3\left(13-x^2\right)\ge\left(7-x\right)^2\to\)
\(4x^2-14x+10\le0\to2x^2-7x+5\le0\to\left(x-1\right)\left(2x-5\right)\le0.\)
Từ đây ta được (lập bảng xét dấu nếu không hiểu) \(1\le x\le\frac{5}{2}.\) Khi \(a=b=c=2\) thì \(x=1.\) Khi \(a=b=c=-\frac{3}{2}\) thì \(x=\frac{5}{2}.\) Vậy giá trị bé nhất của x là \(1\) và giá trị lớn nhất là 5/2.