$y=\sqrt{4a+1}$y=√4a+1+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

Ap dung BDT Bun-hia-cop-xki ta co

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{1+1+1}.\sqrt{4\left(a+b+c\right)+3}=\sqrt{3.7}=\sqrt{21}\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)

DD
1 tháng 7 2021

\(P^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(4a+3+4b+3+3c+3\right)\)

\(=63\)

\(\Rightarrow P\le\sqrt{63}=3\sqrt{7}\).

Dấu \(=\)khi \(\hept{\begin{cases}4a+3=4b+3=4c+3\\a+b+c=3\end{cases}}\Leftrightarrow a=b=c=1\).

19 tháng 7 2017

Áp dụng Cauchy-Schwarz:

\(VT^2\le\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)\)

\(=3\left(4\left(a+b+c\right)+3\right)\)

\(=3\left(4+3\right)=21< 25=VP^2\)

Suy ra VT<VP---> đúng

14 tháng 9 2019

Ap dung BDT Bun-hia-cop-xki ta co:

\(\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1+1+1\right)\left[4\left(a+b+c\right)+3\right]=21\)

\(\Rightarrow-\sqrt{21}\le\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}< 5\)

\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)

29 tháng 9 2019

Ap dung BDT Bun-hia-cop-xki ta co:

\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1+1+1\right)\left[4\left(a+b+c\right)+3\right]=21(4a+1​+4b+1​+4c+1​)2≤(1+1+1)[4(a+b+c)+3]=21

\Rightarrow-\sqrt{21}\le\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}&lt; 5⇒−21​≤4a+1​+4b+1​+4c+1​≤21​<5

\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}&lt; 5⇒4a+1​+4b+1​+4c+1​<5

24 tháng 5 2021

\(M=\frac{\left(a+1\right)^2+2a}{a\left(a+1\right)}+\frac{\left(b+1\right)^2+2b}{b\left(b+1\right)}+\frac{\left(c+1\right)^2+2c}{c\left(c+1\right)}\)

\(M=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+1}{c}+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(M=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(M\ge3+\frac{9}{a+b+c}+2\left(\frac{9}{a+b+c+3}\right)\ge3+3+3=9\)

Dấu "=" xảy ra khi a=b=c=1

22 tháng 11 2017

2) \(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+\dfrac{1}{4xy}\)

Áp dụng BĐT Cauchy-Schwa, ta có:

\(A\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x+y\right)^2}=\dfrac{3}{2}\)

22 tháng 11 2017

1) Áp dụng BĐT Bunyakovsky, ta có:

\(\left(4a+1+4b+1+4c+1\right)3\ge\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\)

\(\Rightarrow VT\le\sqrt{21}< 3\)(Sai)

Vậy đề sai, thử với a=0,5;b=0,1;c=0,4

5 tháng 6 2017

Bạn bình phương lên là tính đc GTLN đó

5 tháng 6 2017

cảm ơn bạn